THE ULTRA-COMPACT BINARY CANDIDATE
KUV 23182+1007 IS A BRIGHT QUASAR

SOUTHWORTH, J.1; SCHWOPE, A.2; GÄNSICKE, B. T.;1 SCHREIBER, M. R.3

1Department of Physics, University of Warwick, Coventry, CV4 7AL, UK, email: j.k.taylor@warwick.ac.uk, Boris.Gaensicke@warwick.ac.uk
2Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany
3Departamento de Fisica y Astronomia, Universidad de Valparaiso, Avenida Gran Bretana 1111, Valparaiso, Chile

KUV 23182+1007 was identified as a blue object in the Kiso UV Survey in the 1980s. Classification-dispersion spectroscopy showed a featureless continuum except for a strong emission line in the region of He II $4686\,\text{Å}$. This is a hallmark of the rare AM CVn class of cataclysmic variable star, so we have obtained a high-S/N blue spectrum of this object to check its classification. Instead, the spectrum shows a strong quasar-like emission line centred on $4662\,\text{Å}$. Comparison with the SDSS quasar template spectra confirms that KUV 23182+1007 is a quasar with a redshift of $z = 0.665$.

The Kiso Ultraviolet Survey (Noguchi, Maehara & Kondo 1980; Kondo et al. 1984) identified 1186 objects with blue colours in a set of fields observed using the 1.0 m Schmidt telescope of Kiso Observatory. Classification-dispersion spectroscopy of these objects were presented in a series of papers by Wegner and colleagues. The spectra of three objects, KUV 01584−0939, KUV 23182+1007 KUV 23061+1229, were given by Wegner, Boley & Swanson (1987) and Wegner & McMahan (1988). All three of these showed an interesting strong emission in the region of the He II $4686\,\text{Å}$ spectral line.

However, confusion arose between the objects KUV 23182+1007 and KUV 23061+1229 in Wegner & McMahan (1988). In that work, both objects were found to have He II $4686\,\text{Å}$ emission lines (with some night-to-night variability noted), but the names in the figure titles and figure captions were in mutual disagreement. Koester et al. (2001) have since found that KUV 23061+1229 is a white dwarf of type DA.

Strong He II emission is a characteristic of the rare AM CVn class of cataclysmic variable star (Warner 1995; Southworth et al., 2006). These objects are particularly interesting ultra-short period helium-rich systems which are thought to be interacting binaries composed of two degenerate objects, the mass donor being a helium white dwarf. KUV 01584−0939 has since been confirmed to be an AM CVn star (Warner & Woudt 2002; Espaillat et al. 2005), and is included in the General Catalogue of Variable Stars under the name ESCeti.
As very few AM CVn systems are known we have obtained a spectrum of the second of the objects, KUV 23182+1007, in order to investigate its classification as a cataclysmic variable. We also obtained a spectrum of KUV 23061+1229 in order to confirm that it is a white dwarf and to fully clear up the confusion over the identities of these two objects. For these observations we adopted the object identifications and sky co-ordinates as given by the CDS Simbad tool\(^1\).

\[\text{Figure 1. Magellan/LDSS3 spectrum of the second AM CVn candidate, KUV 23061+1229, confirming that this object is a DA white dwarf.}\]

Two consecutive long-slit spectra of KUV 23182+1007, immediately followed by one spectrum of KUV 23061+1229, were obtained on the night of 2007 May 19. We used the LDSS3 spectrograph attached to the 6.5 m Magellan Clay telescope at Las Campanas Observatory, Chile. The VPH Blue grism was used along with a slit width of 0.75\(\text{"}\), giving a useful wavelength coverage of 4000–6130 \(\text{Å}\) (depending on brightness) at a reciprocal dispersion of 0.68 \(\text{Å} \text{px}^{-1}\). From the arc lamp and sky lines we estimate a resolution of approximately 2 \(\text{Å}\). Wavelength and flat-field calibration was achieved using observations of helium/neon/argon and quartz lamps, taken immediately after the science spectra and at the same sky position. The two science spectra of KUV 23182+1007 have been combined and rebinned to increase the signal-to-noise ratio, resulting in a single spectrum with a reciprocal dispersion of 2 \(\text{Å} \text{px}^{-1}\). The effective midpoint of this observation is HJD 2454240.88628. The midpoint of the spectrum of KUV 23061+1229 occurred at HJD 2454240.90236.

The spectrum of KUV 23061+1229 (Fig. 1) is clearly that of a DA white dwarf, in agreement with the results of Koester et al. (2001) and its inclusion in the white dwarf

\(^1\)http://simbad.u-strasbg.fr/simbad/sim-fid
catalogue of McCook & Sion (1999). We have therefore adopted the atmospheric parameters found by Koester et al. (2001) to calculate a model spectrum (Gänsicke, Beuermann & de Martino 1995) of KUV 23061+1229 and used this to divide out the wavelength-dependent response function of the spectrograph from the spectrum of KUV 23182+1007.

The KUV 23182+1007 spectrum is plotted in Fig. 2 and shows a strong emission line at 4660 Å which we identify to be the Mg 2800 Å line which is a characteristic feature of quasar spectra. In Fig. 2 we have also plotted a template quasar spectrum2 from the Sloan Digital Sky Survey to which we have applied a redshift of \(z = 0.665 \). It can be seen that several additional quasar emission lines match the spectrum of KUV 23182+1007, confirming that this object is a bright quasar with a redshift of \(z = 0.665 \).

The large width of the Mg II line (FWHM \(\sim 50 \AA \equiv \sim 5000 \text{ km s}^{-1} \)) indicates that KUV 23182+1007 is a type I AGN. Using \(\Lambda_{\text{CDM}} \) cosmological parameters, the distance modulus is 43.0. With the observed \(R \)-band apparent magnitude \(m_R = 17.5 \) (a proxy for the rest-frame \(B \)-band magnitude) the absolute rest-frame \(B \)-band magnitude becomes \(M_B = -25.5 \), which confirms that this object is a quasar with a typical absolute brightness (Veron-Cetty & Veron 2006).

![Figure 2](http://www.sdss.org/dr5/algorithms/spectemplates/spDR2-029.fit)

Figure 2. Magellan/LDSS3 spectrum of the main AM CVn candidate, KUV 23182+1007 (upper solid line), after combining and rebinning. A template quasar spectrum from the SDSS is also shown (lower solid line) after applying a redshift of \(z = 0.665 \) to the wavelength scale. The stronger quasar emission lines are labelled with their rest wavelengths, taken from Vanden Berk et al. (2001).

As active galactic nuclei are often X-ray sources we have investigated the XMM-Newton and ROSAT databases for sources at the position of KUV 23182+1007. This region

2The spectrum was obtained from http://www.sdss.org/dr5/algorithms/spectemplates/spDR2-029.fit
of sky has not been observed using pointed observations by these satellites. However, the ROSAT All-Sky Survey\(^3\) (Voges et al., 1999, 2000) includes an exposure of 444s of this position, in which a source RXS J232044.6+102354 is detected with a count rate of \(0.0249 \pm 0.0094\) counts s\(^{-1}\). This is within 6′ of the position of KUV 23182+1007, and over 35′ from the next nearest X-ray source. Given the quoted ROSAT positional error of 15″, this is a strong detection. The detected X-ray emission is consistent with our identification of KUV 23182+1007 as a quasar.

We have therefore clearly identified that KUV 23182+1007 is an X-ray emitting quasar with a redshift of \(z = 0.665\), and confirmed that KUV 23061+1229 is a normal DA white dwarf. The classification of KUV 23182+1007 in Simbad and catalogues of cataclysmic variables (Downes et al. 2001; Ritter & Kolb 2003) should be corrected. This report is intended to avoid other researchers using valuable telescope time to investigate the basic properties of KUV 23182+1007.

References:

Voges, W., et al., 2000, IAU Circ., 7432

\(^3\)The ROSAT All-Sky Survey catalogue can be accessed using the CDS VizieR service at http://cdsweb.u-strasbg.fr/viz-bin/VizieR-2?-source=IX/29