Groundwater-surface water exchange in the proglacial zone of retreating glaciers in SE Iceland

Amir Levy

This thesis is submitted for the degree of Doctor of Philosophy

School of Geography, Geology, and the Environment

Keele University

June 2015
Abstract

Groundwater-surface water exchange significantly impacts proglacial hydrology and ecology. This study applies a multidisciplinary approach to investigate groundwater-surface water exchange in the proglacial zones of two retreating glaciers in SE Iceland. Mapping of decadal changes in the extent of proglacial groundwater seeps in the large outwash plain of Skeiðarársandur has shown a 97% decline, as well as substantial falls in groundwater levels. Field and laboratory measurements suggested high spatial variability in hydraulic conductivity at the Skaftafellsjökull foreland. The highest hydraulic conductivity was measured in areas underlain by glaciofluvial deposits whilst the lowest hydraulic conductivities were associated with glacial tills and lacustrine deposits.

Precipitation was identified as an important control on groundwater levels on various temporal scales. Automated monitoring of meltwater and groundwater levels also identified fluctuations in meltwater level as an important control on hydraulic heads, whose importance on groundwater levels has been observed during various flow regimes. The close connection between meltwater and groundwater levels suggest high meltwater-aquifer exchange. However, high meltwater-aquifer exchange is contested by significantly different geochemical and isotopic composition of groundwater and meltwater.

Hydrogeological flux estimates suggest high spatial variability in groundwater seepage into the Instrumented Lake, which was attributed to the high variability in hydraulic conductivity around the lakeshores. These are also supported by high-resolution temperature mapping at the lake bed, which suggested that groundwater upwelling in the fine-grained lakeshore took place at discrete locations.

This study suggests climate and glacier margin fluctuations as primary controls on proglacial groundwater-surface water exchange. It also highlights the importance of groundwater contributions to water quality and ecology, with groundwater-fed bodies possibly sustaining important ecological niches. However, proglacial groundwater-fed
features are transient and are threatened by changes in precipitation and glacier retreat. Further declines in groundwater-fed hydrological systems are therefore projected to adversely impact proglacial groundwater-surface water interaction.
Acknowledgements

Intrinsically, a tremendous amount of work has gone into the production of this thesis, and it would not have been possible without the help of many people. I would like to start by thanking RANNIS (the Icelandic Research Authorities for granting research permissions) and several folks from Iceland, who have contributed tremendously towards the completion of this project: First of all, I would like to thank Regina Hreinsdóttir, Gudmundur Ogmundsson, and the rangers at the Skaftafell Visitor Centre of the Vatnajökull National Park for the permit to research in this wonderful location and for all the logistical support, which ranged from ladders to charging batteries to great parties. I would also like to thank Olafur Magnusson for his continuous help and infinite networking, which were a great help in obtaining fieldwork equipment for this research. I would also like to thank Gunnar Bjarki Rúnarsson (of Byko, Selfoss) for his excellent, innovative, and always pleasant service in providing and transporting field equipment.

I would also like to thank various people who have helped with fieldwork for this project, carrying long pipes and heavy sledge hammers across dusty outwash plains: Jack Beasley, Tom Utley, April Fitzgerald, and Ian Peachey. I would also like to thank the following members of Keele University’s Department of Geography, Geology, and the Environment: Pete Gratbach and Dave Ward for their help with field equipment, Keith Mason for his help with the digitisation of the aerial images of Skeiðarársandur, Rich Burgess for all his help in anything IT related and for all the other banter, Andy Lawrence for his help with various printing tasks that formed a part of this project, and Dave Emley for his help with various components of the project. I would also like to thank Ian Wilshaw for his endless patience with the Dionex analysis and for his help and advice on obtaining fieldwork equipment. I would also like to thank Nigel Cassidy for his help with various technical components of this research such as the FO-DTS and laboratory permeameter. I would also like to thank Amy Cowles (Department of Chemistry, Keele University) for helping with cation analysis and for the staff at the Department of Geography at the University of Zurich, for helping with stable isotope analysis. I would also like to thank the administration staff of the Department and EPSAM for their help with various components of the project. I would like to thank my fellow post grads for their fun attitude and continuous support and laughter, particularly Liam Bullock and Adam Jeffrey, for all his help with helping me to get Word and Excel to behave. A special thanks is for John Weatherill, for all the advice and experience about aquifers, florescence, and drive pointing. I would also like to thank the financial support received for this project from Keele University’s ACORN funding and the RI for the Environment, Physical Sciences, and
Applied Mathematics (EPSAM) and also to the Royal Geographic Society with the Institute of British Geographers (RGS-IBG) for their support for fieldwork through the 2012 Postgraduate Research Award, grant number PRA 26.12. I would also like to thank the Keele Postgraduate Association (KPA) for their travel grant to present at the DACA conference in Davos in July 2013. I would like to thank The Icelandic Glaciological Society (IGS) and the Icelandic Metrological Office (IMO) are for their kind provision of glaciological, meteorological, and hydrological data, which was a tremendous help for this project. Special thanks to Stefan Krause for his help with data analysis, feedback, and helping with field logistics. Special thanks also to Rich Waller and Zoe Robinson for the patience and all the feedback and help in the field and during the data analysis and write up, and for exposing me to amazing delicacies such as Arctic Caviar.

Various friends have helped, asked, prayed and generally supported me during this PhD, and I would like to therefore thank Andy Hayward, for always cheering me up and for the pints and cynicism, to Rob and Val Lowe and Kanchan Vahora, for the support, prayers, encouragement and feeding during the past four year, to Dave and Ione Newall for their support, coffee and feeding, to Rob Barnett and Mark Harding, Will Hunt and Chris and Kate Shack for their support and prayers. And to my lovely Kiwi, Hannah, who always showed support and asked how the project is going. Just before the end I would like to thank mum and dad for the support and love over the years. And last, I just thank God for being all along this long, challenging journey, and for the strength and perseverance that He has given me, even in hard times when things don’t work and everything seems to fall apart.
Table of Contents

Abstract ... ii

1. **Introduction** ... 1
 1.1. Scientific rationale ... 1
 1.2. Project aim .. 4
 1.3. Specific objectives ... 4
 1.4. Methods ... 5

2. **Literature review** ... 8
 2.1. Introduction ... 8
 2.2. Water sources in glaciated catchments ... 8
 2.3. Groundwater flow in glaciated environments ... 13
 2.3.1. Introduction .. 13
 2.3.2. Processes of groundwater flow in glaciated environments 14
 2.3.3. Geological controls on subglacial and proglacial groundwater flow 18
 2.3.4. The impact of geomorphology on proglacial groundwater flow 20
 2.3.5. The impact of glacial thermal regime on groundwater flow 22
 2.3.6. Groundwater flow underneath past ice sheets ... 24
 2.3.7. Summary ... 26
 2.4. Groundwater-surface water exchange ... 27
 2.4.1. Introduction .. 27
 2.4.2. The impact of topography on proglacial groundwater-surface water exchange 30
 2.4.3. The impact of hydrogeology and geomorphology on proglacial groundwater- surface water exchange ... 32
2.4.4. The impact of climatic conditions on groundwater-surface water exchange35
2.4.5. Monitoring of groundwater-surface water exchange ..35
2.4.6. Summary ...39
2.5. The impact of groundwater on proglacial habitats ...40
 2.5.1. The impact of water source on water physicochemical parameters in glaciated catchments ..40
 2.5.2. Projected impacts of climate change on proglacial hydrology and ecology .44
 2.5.3. Summary ..46
2.6. Conclusions ..47
3. Field sites ..48
 3.1. Introduction ..48
 3.2. Icelandic hydrology and hydrogeology ...49
 3.3. Western Skeiðarársandur ..54
 3.4. The Skaftafellsjökull foreland field site ...65
 3.5. Monitoring of proglacial groundwater systems ...78
 3.5.1. Piezometer design and installation ..78
 3.5.2. Topographic surveying of the piezometers ...83
 3.5.3. Monitoring of groundwater levels ..83
4. Long-term variability of proglacial groundwater-fed hydrological systems in Skeiðarársandur ...85
 4.1. Introduction ..85
 4.2. Methods of monitoring long term changes in proglacial groundwater levels and the extent of groundwater seeps ...86
 4.3. Temporal changes in the extent of groundwater seeps ..87
4.3.1. 1986 aerial photograph ... 87
4.3.2. 1997 aerial photograph ... 88
4.3.3. 2012 aerial photograph ... 89
4.4. Changes in groundwater levels in western Skeiðarársandur 93
4.5. Changes in proglacial water budget .. 95
4.6. Interpretation and discussion .. 98
 4.6.1. The spatial distribution of changes in groundwater levels 99
 4.6.2. Possible causes for the declines in groundwater levels and seeps 100
 4.6.3. Implications of the declines in groundwater seeps and levels 104
4.7. Conclusions ... 105

5. Proglacial Hydrogeology ... 107
 5.1. Introduction ... 107
 5.2. Dominant geomorphic processes and hydrological environments at the
 Skaftafellsjökull foreland .. 108
 5.2.1. Glaciofluvial deposits .. 109
 5.2.2. Glacial deposits .. 110
 5.2.3. Lacustrine processes ... 111
 5.2.4. Summary of depositional environments at the Skaftafellsjökull foreland ... 112
 5.3. Methods for determining hydraulic conductivity .. 113
 5.3.1. Falling head (slug) tests .. 115
 5.3.2. Particle Size Analysis (PSA) .. 117
 5.3.3. Constant head permeameter .. 121
 5.4. Results for the determination of hydraulic conductivity 122
5.4.1. Spatial variability in grain size...122
5.4.2. Comparison of hydraulic conductivity between the PSA equations126
5.4.3. Slug tests..129
5.4.4. Constant head permeameter ..131
5.4.5. Choice of preferred method for estimating hydraulic conductivity132
5.5. Spatial variability in hydraulic conductivity at the Skaftafellsjökull foreland.....133
5.6. Calculations of hydrogeological parameters for the Skaftafellsjökull foreland
aquifer ..138
5.6.1. Equations for the calculations of aquifer parameters138
5.6.2. Choice of input parameters for the calculation of aquifer properties140
5.6.3. Aquifer parameters of the Skaftafellsjökull foreland142
5.7 Chapter conclusions ..144

6. The Geochemistry and isotopic (δH and δ¹⁸O) composition of groundwater and surface water at the Skaftafellsjökull foreland146
6.1. Introduction ..146
6.1.1. The mechanisms of proglacial geochemical weathering147
6.1.2. The use of stable water isotopes (δ¹⁸O and δD) in hydrology151
6.2. Methods ...155
6.2.1. Analysis of groundwater and surface water quality..............................155
6.2.2. Analysis of major anions and cations ..158
6.2.3. Water stable isotopes (δD and δ¹⁸O)...160
6.3. Spatial and temporal variability in groundwater quality160
6.3.1. Groundwater physicochemical parameters ...162
6.3.2. Spatial and temporal variability in groundwater solute concentrations ...165
6.3.3. Summary ... 178

6.4. Spatial and temporal variability in surface water quality and geochemistry 179

6.5. The δ^{18}O and δD composition of groundwater and surface water at the
Skaftafellsjökull foreland .. 185

6.5.1. Introduction .. 185

6.5.2. The isotopic composition of precipitation ... 187

6.5.3. Groundwater isotopic composition ... 190

6.5.4. The isotopic composition of surface water .. 191

6.5.5. Spatial variability in Deuterium Excess (d-excess) .. 192

6.5.6. Summary ... 194

6.6. Interpretation and discussion .. 194

6.6.1. Sources of recharge at the Skaftafellsjökull foreland ... 194

6.6.2. Controls on groundwater and surface waters geochemistry at the
Skaftafellsjökull foreland .. 195

6.6.3. Spatial and temporal variability in river-aquifer exchange .. 199

6.6.4. Lake-aquifer exchange .. 202

6.7. Conclusions .. 203

7. River-aquifer exchange ... 205

7.1. Introduction .. 205

7.2. Groundwater flow at the Skaftafellsjökull foreland ... 206

7.2.1. Hydraulic heads at the Skaftafellsjökull foreland ... 208

7.2.2. Vertical groundwater flow .. 215

7.2.3. Configuration of proglacial groundwater flow at the Skaftafellsjökull foreland
 .. 216
7.2.4. Summary ..218

7.3. The impact of high frequency, low magnitude processes on proglacial river-aquifer exchange ..218

7.3.1. Temporal variability in meltwater levels219

7.3.2. Temporal variability in hydraulic heads at the transect221

7.3.3. Fluctuations in groundwater and meltwater temperature223

7.3.4. Fluctuations in groundwater and meltwater EC228

7.3.5. Interpretation ..231

7.3.6. Summary ..238

7.4. The impact of jökulhlaup events on proglacial river-aquifer exchange239

7.4.1. Temporal variability in meltwater and groundwater levels241

7.4.2. Temporal variability in groundwater and meltwater temperature244

7.4.3. Temporal variability in groundwater and meltwater EC247

7.4.4. Interpretation ..248

7.4.5. Summary ..250

7.5. Discussion ...251

7.6. Conclusions ..253

8. Thermal and hydrogeological tracing of aquifer-lake exchange255

8.1. Introduction ..255

8.2. Methods for investigating proglacial-aquifer lake exchange259

8.2.1. Mapping of lakebed temperatures ..259

8.2.2. Calculation of groundwater fluxes from pore-water temperatures260

8.2.3. Calculation of groundwater fluxes from hydrogeological measurements264
8.3. FO-DTS monitoring of lakebed temperature ..266
8.4. Pore-water temperature dynamics at the IL ..270
8.5. Quantification of groundwater fluxes ...273
8.5.1. Groundwater fluxes (temperature-based) obtained from VTP273
8.5.2. Groundwater (Darcian) fluxes from hydrogeological measurements275
8.6. Discussion ...277
8.6.1. Method comparison between VTP and Darcian fluxes277
8.6.2. Spatial patterns of proglacial aquifer-lake exchange281
8.7. Conclusions ...284

9. Conclusions ...285
9.1. Summary of main findings ..285
9.2. Wider implications ..288
9.2.1. Spatial heterogeneity in proglacial hydrogeology288
9.2.2. Implications of climate change and glacier retreat on proglacial groundwater-surface water exchange ...289
9.2.3. Methodological implications ...291
9.3. Further research ...291

References ..293
Appendices ..332

List of Figures

Figure 2.1. Temporal changes in the contributions of proglacial water sources ..11
Figure 2.2. The relation between glacial mass balance, volume and runoff (Adapted from Jansson et al., 2003. p. 119) ...12
Figure 2.3. The supraglacial, englacial, and subglacial drainage routes by which snow and ice melt reach the glacier sole. Adapted from Irvine-Fynn et al. (2011) ...16
Figure 5.9. The spatial distribution in hydraulic conductivity (m/day) at the Skaftafellsjökull foreland. ...134
Figure 6.1. The increasing depletion of isotopic composition with increasing continentality and altitude (from Robinson, 2003). ...152
Figure 6.2. Purging experiments to determine the volume of groundwater needed to attain representative samples. ...156
Figure 6.3. The field site and sampling points at the Skaftafellsjökull foreland ...161
Figure 6.4. Total daily precipitation (IMO, 2013), hydraulic heads at the Skaftafellsjökull foreland, and the sampling intervals for groundwater (white arrows) and surface water. ...162
Figure 6.5. Boxplot of groundwater and surface water temperature (°C) and Electrical Conductivity (EC) [μS/cm] ...164
Figure 6.6. Temperature and EC in the different hydrological environments of the Skaftafellsjökull foreland. ...165
Figure 6.7. Boxplot comparison of Ca^{2+}, Mg^{2+}, SO_4^{2-}, Cl^-, and Na^+ + K^+ concentrations (μeq/l) between groundwater and surface water. ...166
Figure 6.8. SO_4^{2-} and Cl^- concentrations (μeq/l) in groundwater and surface water at the Skaftafellsjökull foreland. ...167
Figure 6.9. SO_4^{2-} and Ca^{2+} + Mg^{2+} concentrations (μeq/l) in groundwater and surface water at the Skaftafellsjökull foreland. ...168
Figure 6.10. SO_4^{2-} and Na^+ + K^+ concentrations (μeq/l) in groundwater and surface water from the Skaftafellsjökull foreland. ...168
Figure 6.11. Temporal variability of solute concentrations in the piezometers near the meltwater channel (GW5 and GW9) between July-August 2012. ...171
Figure 6.12. Temporal variability in groundwater solute concentrations at the transect (T1-T3) in July-August 2012. ...173
Figure 6.13. Temporal variability in Cl^- and SO_4^{2-} in IL groundwater (July-August 2012). ...175
Figure 6.14. Fluctuations in IL groundwater concentrations of Ca^{2+} + Mg^{2+} and Na^+ + K^+. ...176
Figure 6.15. Groundwater solute concentrations in the outwash. ...178
Figure 6.16. Fluctuations in surface water Cl^- and SO_4^{2-} concentrations. ...183
Figure 6.17. Fluctuations in surface water Ca^{2+} + Mg^{2+} and Na^+ + K^+ concentrations. ...184
Figure 6.18. δD vs δ^{18}O composition of groundwater and surface water at the Skaftafellsjökull foreland. ...186
Figure 6.19. The isotopic composition of summer precipitation from Skeiðarársandur (Robinson 2003) and Reykjavík (IAEA/WMO, 2014). ...188
Figure 6.20. Spatial variability of δ^{18}O in groundwater and surface water at the Skaftafellsjökull foreland. ...191
Figure 6.21. Groundwater and surface water EC vs. δ18O composition (after Lambs, 2004). ...192
Figure 6.22. The spatial variability of Deuterium Excess (%) in groundwater and surface water at the Skaftafellsjökull foreland. ...193
Figure 7.1. Groundwater monitoring infrastructure at the Southern Oasis (Vatnajökull National Park, 2007). ...208
Figure 7.2. Total daily precipitation (IMO, 2013) and elevation of hydraulic heads at the field site. ...209
Figure 7.3. Total daily precipitation, hydraulic heads at the outwash and mean daily levels of the meltwater river Skáftafellsá. ...211
Figure 7.4. Total daily precipitation (IMO, 2013), hydraulic heads around the IL and the mean daily level of the river Skáftafellsá. ...213
Figure 7.5. Daily mean river level and hydraulic heads (mAD) near the meltwater channel (GW5 and GW9). ...214
Figure 7.6. Vertical groundwater flow direction at the Skaftafellsjökull foreland. ...216
Figure 7.7. Regional groundwater flow systems at the Skaftafellsjökull foreland. ...217
Figure 7.8. Hourly mean meltwater, river levels and hydraulic heads for the transect. ...221
Figure 7.9. Mean hourly meltwater, groundwater (T1-T3), and air temperature 21/06-31/08/2012. ...224
Figure 7.10. Mean hourly meltwater river level and groundwater levels and temperature at T1 during the 2012 field season. ...225
Figure 7.11. Mean hourly meltwater river level and groundwater levels and temperature at T2 during the 2012 field season. ...226
Figure 7.12. Mean hourly meltwater river level and groundwater levels and temperature at T3 during the 2012 field season. ...227
Figure 7.13. Meltwater and groundwater EC at the Skaftafellsá and the transect.228
Figure 7.14. Meltwater river level, hydraulic head, and groundwater EC at T1229
Figure 7.15. Meltwater river levels, hydraulic heads, and groundwater EC at T2230
Figure 7.16. Meltwater levels, hydraulic heads, and groundwater EC at T3231
Figure 7.17. Inter-annual changes in lake levels at Island Lake ..236
Figure 7.18. The impacts of the flood in August 2012 flood on lake water quality at the IL and Swan Lake ..238
Figure 7.19. Location of the river Núpsvötn-Súla and the GW4 borehole241
Figure 7.20. River levels at the Núpsvötn-Súla (IMO, 2013), hydraulic heads at GW4, and total daily precipitation at Kirkjubæjarklaustur IMO (2013) station ..244
Figure 7.21. Meltwater levels and temperature at the Núpsvötn-Súla (IMO, 2013) and groundwater temperature at GW4 ..246
Figure 7.22. Meltwater levels and EC at the river Núpsvötn-Súla (IMO 2013) and groundwater EC at GW4 ..248
Figure 7.23. Conceptual model of the controls and impacts of proglacial river/aquifer exchange. 252
Figure 8.1 FO-DTS monitored temperatures measured on top of the lakebed sediments (upper cable). ..267
Figure 8.2. FO-DTS monitored temperatures measured at 0.10 m depth within the lakebed sediments (buried cable) ...268
Figure 8.3. Mean, 5th and 95th Percentile of the FO-DTS surveys temperatures for lakebed sediments (upper cable) and 0.10 m depth within the lakebed sediments (buried cable)269
Figure 8.4. The averaged deviation from the mean temperature along the lakebed (upper cable) and at 0.10 m below the lakebed (buried cable) ..270
Figure 8.5. Box plots of temperature at the three VTP ..271
Figure 8.6. Mean hourly air temperature at the field site (green line) and pore-water temperatures at VTP 1-3 ...272
Figure 8.7. Groundwater fluxes (m/day) from VTP1-VTP3 ..274
Figure 8.8. Comparison of Darcian groundwater fluxes from the coarse-grained (filled black shapes) and fine-grained (grey shapes) lakeshores. Note the logarithmic scale ..277
Figure 8.9. Schematic representation of recharge and aquifer-lake exchange at the IL. The model is not drawn to scale. ...283
Figure 8.10. A conceptual model of the controls and impacts of proglacial aquifer/lake exchange ..283

List of Tables

Table 1.1. The methods applied to address the specific objectives of the study5
Table 1.2. Structure of the thesis ...6
Table 3.1. Annual and seasonal mean air temperature and total precipitation at the Skeaðarársandur and Skaftafellsjökull field sites ..58
Table 4.1. Changes in the area and perimeter of proglacial groundwater seeps and lakes in western Skeaðarársandur (1986-2012). ..93
Table 4.2. Changes in proglacial groundwater levels at the different hydrogeological environments of western Skeaðarársandur (July 2000-August 2012)94
Table 4.3. Changes in the Moving Average (MA) of annual and seasonal temperature, precipitation, Potential Evaporation (PE), and water budget in the study area from 1986-2012 and 1997-2012 (IMO, 2013). ...97
Table 5.1. Methods for determining hydraulic conductivity. Note that the scale of test increases down the table ..114
Table 5.2. Mean grain size (mm) and standard deviation for the different hydrogeological environments at the Skaftafellsjökull foreland ...125
Table 5.3. Mean sorting coefficients and standard deviation in different hydrogeological environments at the Skaftafellsjökull foreland ...126
Table 5.4. Mean and standard deviation of hydraulic conductivity from the different methods. The full data set is found in Appendix 4 ..127
Table 5.5. Mean hydraulic conductivity and standard deviation for the slug tests131
Table 5.6. Comparison of hydraulic conductivity from glaciated and deglaciated catchments137
Table 5.7. Chosen parameters for the calculation of the hydrogeological properties of the Skaftafellsjökull foreland aquifer ..142
Table 5.8. Calculated aquifer parameters for the Southern Oasis ...143
Table 6.1. Analytical equipment, accuracy of equipment, and frequency of measurements taken in this study ..158
Table 6.2. Limit of Detection and precision for major anions and cations.159
Table 6.3. Mean and standard deviation of solute concentrations, EC, and temperature of groundwater and surface water at the Skáfafléndsjökull foreland ..169
Table 6.4. Mean solute concentrations and physicochemical parameters in different surface water bodies at the Skáfafléndsjökull foreland ...181
Table 6.5. Mean isotopic composition of the different hydrological environments at the Skáfafléndsjökull foreland ...187
Table 6.6. Summary of the isotopic composition of summer precipitation from Skeiðarársandur (Robinson, 2003) and Reykjavik (IAEA-WMO, 2014) ...189
Table 6.7. Solute concentrations in groundwater from various proglacial environments.197
Table 6.8. Solute concentrations in meltwater from different proglacial settings.198
Table 7.1. Mean groundwater and meltwater levels, temperature and EC at the Skáfafléndsjökull foreland and western Skeiðarársandur ...219
Table 7.2. Lag time (in hours) between meltwater river levels and hydraulic head at the transect. ...223
Table 8.1. The parameters used in equations 1-4 (Hillel, 2004, Lautz, 2010) for the calculation of seepage fluxes. The table shows calculations using parameters for fine (a) and coarse (b) sediments ..263
Table 8.2. Grain size variability for the different VTP locations ..264
Table 8.3. Hydraulic conductivity (m/day) for the VTP locations and proxies265
Table 8.4. Groundwater fluxes calculated from the VTP ...273
Table 8.5. Comparison between the Darcian and VTP groundwater fluxes276

List of Equations

Equation 2.1. Darcy’s Law of groundwater flow (1856) ...14
Equation 4.1. Calculation of Potential Evapotranspiration (Thorntwaite, 1948)96
Equation 5.1. Slug test analysis for calculating hydraulic conductivity (modified from Hvorslev, 1951) ...116
Equation 5.2. The Hazen equation (1892) ..118
Equation 5.3. The Alyamani and Sen (A&S) equation (1993). ..120
Equation 5.4. The Puckett et al. equation (1985) ...120
Equation 5.5. Calculation of sediment sorting coefficient (after Folk, 1986).121
Equation 5.6. Calculation of hydraulic conductivity (K) using constant head permeameter122
Equation 5.7. The calculation of groundwater discharge fluxes (Darcy, 1856).138
Equation 5.8. Calculation of aquifer volume ...139
Equation 5.9. Calculation of groundwater velocity. ..139
Equation 6.1. Carbonate hydrolysis ..148
Equation 6.2. Silicate hydrolysis ..148
Equation 6.3. Coupled sulphide oxidation and carbonate dissolution148
Equation 6.4. The Global Meteoric Water Line (GMWL) ..151
Equation 6.5. Determination of Deuterium Excess (d-excess) ..154
Equation 6.6. Deviation of isotope ratio from the V-SMOW standard160
Equation 8.1. The 1-D heat transport model ..262
Equation 8.2. Quantification of groundwater fluxes ...262
Equation 8.3. The alpha perimeter for quantifying heat fluxes ..263
Equation 8.4. Effective thermal diffusivity ..263
Equation 8.5. Calculation of Darcian fluxes ..264
Chapter 1

1. Introduction

1.1. Scientific rationale

Groundwater provides an almost ubiquitous source of generally high quality fresh water which supports ecosystems and socioeconomic development in a variety of settings (e.g. Green et al., 2011; Taylor et al., 2013; Foster et al., 2013). Groundwater provides around 1/3 of global freshwater withdrawals, sourcing approximately 42%, 36%, and 27% of the water used for agricultural, domestic, and industrial uses, respectively (Döll et al., 2012; Taylor et al., 2013). Additionally, groundwater also provides critical water storage, which becomes especially important during times of low precipitation and drought (e.g. Alley, 2001; 2007; Vicuña et al., 2012; Andermann et al., 2012). Despite this importance, there is a paucity of research with regards to the impacts of climate change on groundwater systems (Arnell et al., 2001; Kundzewicz, 2007; Taylor et al., 2013). This uncertainty is particularly relevant in catchments dominated by snow and ice melt, where groundwater systems have received substantially less research than surface water systems (Piotrowski, 2007; Robinson et al., 2008; Crossman et al., 2011).

Glaciers significantly impact the hydrology (e.g. Braun et al., 2000; Favier et al., 2008; Crochet, 2013; La Frenierre and Mark, 2014), ecology (e.g. Milner et al., 2009), and geomorphology (e.g. Brardinoni and Hassan, 2006) of their catchments. Over 1/6 of the world’s population rely on water which originates from snow and icemelt for their water supply (Barnett et al., 2005). Climate change is projected to enhance glacier retreat and substantially alter the magnitude and timing of precipitation events. These changes are projected to cause lower and earlier peak meltwater discharge (Lanke et al., 2007; Crochet, 2013). Catchments where glacial melt provides most streamflow during dry periods are especially vulnerable to the projected long term reduction in meltwater (Barnett et al., 2005; Tague and Grant, 2009; Langston et al., 2011; Vicuña et al., 2012;
Chapter 1

Introduction

Thorsteinsson et al., 2014). It is unclear whether glaciated basins contain sufficient storage capacity which will be able to buffer such changes, or whether these changes will lead to a reduction in effective water supply (Barnett et al., 2005; Langston et al., 2011; 2013). Some of this required storage can be provided by groundwater systems (e.g. Clow et al., 2003; Hood et al., 2006; Roy and Hayashi, 2008; 2009; Langston et al., 2011; 2013; Vicuña et al., 2012; Andermann et al., 2012).

Groundwater forms a key component of the hydrology of glaciated basins, with groundwater contributions significantly augmenting surface water runoff, especially during dry seasons or baseflow conditions (Mark and Seltzer, 2003; Jefferson et al., 2008; Roy and Hayashi 2008; 2009; Baraer et al., 2009; Andermann et al., 2012; Crochet, 2013). Groundwater discharge also significantly impacts the physicochemical parameters of surface water bodies, with greater groundwater contributions enhancing proglacial (the area in front of the glacier margin; Thomas and Goudie, 1991) ecology (e.g. Milner and Petts, 1994; Roy and Hayashi, 2008 and 2009; Milner et al., 2009; Gibert and Culver, 2009; Slemmons et al., 2013; Kurylyk et al., 2014a, b).

Hydrological exchange between groundwater and surface water significantly impacts instream water levels, physicochemical parameters (biogeochemistry), and the ecology of both systems. Additionally, this exchange also significantly impacts the zone where active mixing takes place, known as the hyporheic zone (e.g. Bencala, 1993; Hannah et al., 2009; Kløve et al., 2011a, b; Krause et al., 2009a, b; 2011; 2014). Therefore, groundwater and surface water form a single, integrated resource (e.g. Krause et al., 2009a). This integrated understanding of groundwater and surface water is crucial for the effective management of groundwater and surface water systems, compliance with regulatory frameworks (such as the Water Framework Directive), and to improve the resilience to projected changes in climate and land use (e.g. Hood et al., 2006; Roy and Hayashi, 2008; 2009; Krause et al., 2014). The increasingly interdisciplinary research on groundwater-surface water interaction significantly advanced the understanding of the
physical controls (e.g. Harvey and Bencala, 1993; Lewandowski et al., 2009; Sawyer et al., 2009; Krause et al., 2012; 2014) and the ecological (Milner and Petts, 1994; Brunke and Gonser, 1997; Boulton et al., 1998; Brown et al., 2007a, b; Roy et al., 2011) and biogeochemical (e.g. Ullah et al., 2014; Abnizova et al., 2014) importance of groundwater-surface water exchange. However, there is still a substantial paucity of research with regards to the temporal and spatial variability of groundwater-surface water exchange and the availability of freshwater downstream (e.g. Krause et al., 2014). This understating is particularly important in catchments dominated by snow and ice, where climate change and glacier retreat are projected to substantially alter the availability and timing of meltwater discharge, which will impact groundwater-surface water exchange (e.g. Hood et al., 2006; Gooseff et al., 2006; 2013; Rossi et al., 2012; Ala-aho et al., 2013; Drexler et al., 2013; Connon et al., 2014).

This project focuses on the proglacial zones of Skaftafellsjökull and western Skeiðarárjökull, two retreating glaciers in SE Iceland, where groundwater-fed lakes, seeps, and streams form important ecological niches. These niches sustain a variety of flora and fauna, in these otherwise relatively barren environments (e.g. Robinson et al., 2009a). This project has used a combination of field and laboratory techniques in order to investigate the controls on the spatial and temporal variability of, proglacial groundwater-surface water exchange.

This project addresses current gaps in research and adds to existing knowledge on:

- Decadal-scale changes in proglacial groundwater systems in an area of rapid glacial retreat. This includes mapping of changes in the extent of proglacial groundwater seeps and monitoring of changes in proglacial groundwater levels.

- The contribution of meltwater-derived groundwater to surface water bodies in the catchment.
• Improved process understanding with regards to the controls, temporal dynamics, and spatial variability of proglacial groundwater exchange with lakes and rivers.

1.2. Project aim

The aim of this project is to investigate the spatial and temporal variability and hydrological processes of groundwater-surface water exchange at the proglacial zones of Skeiðarárjökull and Skaftafellsjökull, two retreating glaciers in SE Iceland.

1.3. Specific objectives

i. To investigate the impact of glacier margin fluctuations on groundwater levels and on the spatial extent of proglacial groundwater-fed features in western Skeiðarársandur, which is impacted by rapid glacier retreat and high magnitude, low frequency events such as glacier surges and jökulhlaups (glacial outburst floods).

ii. To provide a hydrogeological framework for the Skaftafellsjökull foreland.

iii. To investigate the sources of groundwater and surface water recharge at the Skaftafellsjökull foreland.

iv. To investigate the spatial and temporal patterns and controls on proglacial hydrological exchange between the meltwater river and the aquifer at the Skaftafellsjökull foreland.

v. To investigate the spatial and temporal patterns and controls on proglacial hydrological exchange between the aquifer and lakes at the Skaftafellsjökull foreland.
This study applied remote sensing, hydrogeological, geochemical, isotopic, and geophysical methods in order to investigate proglacial groundwater-surface water exchange (Table 1.1). This approach follows the need in research on groundwater-surface exchange, which is becoming increasingly multi-disciplinary (e.g. Fleckenstein et al., 2010). The detailed methodologies for the respective techniques are found in Chapters 4-8. The structure of the thesis is described in Table 1.2.

Table 1.1. The methods applied to address the specific objectives of the study

<table>
<thead>
<tr>
<th>Objective</th>
<th>Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Investigation of the impact of long term ice margin fluctuations on proglacial groundwater levels and on the extent of groundwater seeps.</td>
<td>• Mapping of changes in the area and extent of groundwater seeps and lakes using aerial photographs (dated from 1986, 1997, and 2012).</td>
</tr>
<tr>
<td></td>
<td>• Long term monitoring of proglacial groundwater levels (July 2000-August 2012). This dataset combines the results from Robinson et al. (2008) with measurements from the network that was installed in July 2011. The two networks were levelled to a common datum in 2012.</td>
</tr>
<tr>
<td>ii) Hydrogeological characterization of the Skaftafellsjökull foreland.</td>
<td>• Determination of hydraulic conductivity from single well response (slug) tests for single piezometers and Particle Size Analysis (PSA).</td>
</tr>
<tr>
<td></td>
<td>• Delineation of groundwater flow direction from the distribution of hydraulic heads in piezometers and piezometer nests.</td>
</tr>
<tr>
<td></td>
<td>• Calculation of aquifer volume, groundwater discharge, and groundwater velocity using the results of the current study and values from the literature.</td>
</tr>
<tr>
<td>iii) To investigate the sources of recharge for proglacial groundwater and surface water.</td>
<td>• Environmental tracing using major cation and anion geochemistry and water stable isotopes (δ^{18}O and δD).</td>
</tr>
</tbody>
</table>
iv) To investigate the spatial and temporal patterns and controls on proglacial hydrological exchange between the meltwater river and the aquifer.

- Automated and manual monitoring of proglacial meltwater and groundwater levels in piezometer nests and piezometers.
- Environmental tracers (water temperature, electrical conductivity, geochemistry and stable isotopes).

v) To investigate the spatial and temporal patterns and controls on proglacial hydrological exchange between the aquifer and lakes.

- High resolution mapping of lakebed temperature anomalies using Fibre Optic Distributed Temperature Sensing (FO-DTS).
- Quantification of groundwater seepage fluxes using Vertical Temperature Profiles (VTP) and hydrogeological measurements (Darcian fluxes).

Table 1.2. Structure of the thesis.

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Main contents</th>
</tr>
</thead>
</table>
| 1. Introduction | • Aims and objectives
• Scientific rationale
• Field sites |
| 2. Literature review | • Water sources in glaciated catchments
• Proglacial groundwater flow
• Groundwater-surface exchange |
| 3. Methodology | • Monitoring infrastructures
• Geochemistry and physicochemical parameters
• Hydrogeology
• Temperature tracing |
| 4. Long term changes in proglacial hydrogeology | • Changes in the extent of groundwater seeps in western Skeiðarársandur
• Changes in groundwater levels in western Skeiðarársandur |
| 5. Hydrogeology | • Dominant geomorphic processes on proglacial hydrogeology
• Spatial heterogeneity in hydrogeological parameters
• Delineation of horizontal and vertical groundwater flow. |
| 6. Geochemistry and stable isotopes | • Physicochemical parameters
• Major anions and cations
• Water stable isotope composition |
| 7. River-aquifer exchange | • Horizontal groundwater flow direction
• Vertical groundwater flow direction
• The impact of low magnitude, high frequency processes (ablation and precipitation) on proglacial groundwater-surface water exchange
• The impact of jökulhlaups on groundwater-surface water exchange |
Chapter 1

Introduction

| 8. Lake-aquifer exchange | • Mapping of lakebed temperature anomalies
• Quantification of seepage fluxes using pore-water temperatures and hydrogeological measurements |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Proglacial groundwater-surface water exchange</td>
<td>• Conceptual model of the controls on proglacial groundwater-surface water exchange</td>
</tr>
</tbody>
</table>
| 10. Conclusions | • Summary of major findings
• Wider implications
• Further research |
2. Literature review

2.1. Introduction

This chapter reviews the current literature on the research areas which are pivotal for this study and highlights gaps within the current state of knowledge. The literature review begins by describing the main water sources within glaciated catchments and the mechanisms of groundwater flow within these catchments. It then describes the importance of hydrological exchanges between groundwater and surface water and the factors which control them. The literature review also summarises projected impacts of climate change on the hydrology, groundwater flow, and groundwater-surface water exchange within glaciated catchments.

2.2. Water sources in glaciated catchments

This section describes the main water sources and hydrology of glaciated catchments, such as the storing of precipitation within snow and ice. The section also describes the projected impacts and implications of climate change and glacier retreat in catchments which are impacted by snow and ice melt. Glaciers cover approximately 10% of the earth’s surface. The accumulation and melting of snow and ice exerts substantial controls on the water resources, natural hazards, sediment transport, geomorphology, and ecology of glaciated catchments (e.g. Gurnell et al., 1999). Meltwater from glaciers and ice sheets also exerts important control on sea-level changes (e.g. Frezzotti and Orombelli, 2014).

Glaciers are divided into an accumulation zone (where precipitation is stored) and ablation zone (where precipitation is released). The divide between the accumulation and ablation zones is known as the Equilibrium Line Altitude (ELA). Glacier mass balance shows the difference between accumulation and ablation. Hence, when accumulation exceeds
ablation, glaciers have a positive mass balance and advance, and vice versa. Globally, glaciers have generally been losing mass during the 1940-50s. Ice losses slowed until the 1970s, but then began to accelerate again (e.g. Zemp et al., 2009; Radić et al., 2013). However, there are some exceptions to this trend, with glacier advances in areas such as New Zealand, Scandinavia, and the Karakoram (Vaughan et al., 2013). These advances have been attributed to increases in precipitation (Lemke et al., 2007) and instabilities in glacial dynamics, such as surges (Quincey et al., 2011; Bolch et al., 2012). Hence, despite the advances in some areas, ice caps and glaciers in most regions, including Iceland, are generally retreating (e.g. Björnsson and Pálsson, 2008).

Glaciers store precipitation in the forms of snow, firn (snow that remained for at least one melt season), and ice (e.g. Jansson et al., 2003; de Woul et al., 2006). This storage forms an important control on the hydrology of glaciated catchments, and it also makes glaciers important natural water reservoirs. The storage and release of snow and ice leads to distinct diurnal, seasonal, and annual fluctuations in the discharge of meltwater-fed streams (e.g. Hubbard et al., 1995; Déry et al., 2009). Additionally, meltwater contributions increase discharge above the levels expected if streams were solely precipitation-fed (e.g. Barnett et al., 2005; Huss et al., 2008; Ruelland et al., 2011). The contributions to discharge from snow and ice melt are especially important in catchments with a distinct dry season, where meltwater sustains rivers during periods of low precipitation (e.g. Hannah et al., 1999; 2000; Mark and Seltzer, 2003; Favier et al., 2008; Juen et al., 2007; Baraer et al., 2009; 2012; Nolin et al., 2010; Condom et al., 2012). The significant impact of snow and icemelt on the hydrology of glaciated catchments is illustrated by the estimation that over 1/6 of the world’s population relies on water which originates from snow packs and glaciers (Barnett et al., 2005).

In addition to the aforementioned impacts on meltwater generation, another striking outcome of the sustained glacial retreat is the global expansion in proglacial zones (Zemp et al., 2008; Cooper et al., 2011). The hydrology of proglacial zones is highly dynamic,
where the interaction between icemelt, snowmelt, precipitation and groundwater significantly impacts catchment hydrology, water quality, geomorphology, and ecology (e.g. Tockner et al., 1997; Ward et al., 1999; Robinson et al., 2008).

Groundwater is a key component of proglacial hydrology, which provides important water storage (Malard et al., 1999; Clow et al., 2003; Hood et al., 2006; Crossman et al., 2011; Rossi et al., 2012; Ala-aho, 2013). The main recharge sources of proglacial groundwater are precipitation, snow, and icemelt (e.g. Robinson et al., 2009b). Groundwater recharge is substantially impacted by geology and geomorphology (e.g. Meriano and Eyles, 2009; Blackport et al., 2014). Proglacial areas underlain by permeable deposits, such as alluvium, sustain significant aquifers (e.g. Tockner et al., 1997; Malard et al., 1999; Crossman et al., 2011; Bajc et al., 2014). Conversely, low permeability deposits and layers, such as permafrost and buried ice, which acts as aquitards, impede groundwater recharge and flow (e.g. Cooper et al., 2002; 2011; Langston et al., 2011; Magnusson et al., 2014). Additionally, groundwater recharge is also impacted by the availability of meltwater and its controls which include climate, altitude, latitude and aspect (e.g. Brown et al., 2006a, b; Jonsson et al., 2009). The spatial distribution of proglacial recharge components varies within the catchment, with the proportion of icemelt generally falling with distance from the glacier margin (e.g. Ward et al., 1999; Robinson et al., 2009a, Cauvy-Fraunié et al., 2014). The proportion of contribution of groundwater to surface runoff also varies temporally. The proportion of groundwater contribution to surface runoff is generally at its lowest during spring and summer, when snowmelt and icemelt dominate discharge. Groundwater contributions then increase during autumn and winter (Figure 2.1) (e.g. Malard et al., 1999; Ward et al., 1999; Marciniak et al., 2014).
Climate change is projected to impact all water sources within proglacial basins, with scenarios projecting substantial alterations in precipitation regimes, glacial extent and glacial mass balance (e.g. IPCC, 2007; Milner et al., 2009; Vaughan et al., 2013). Such changes have already been observed in the Andes (Mark et al., 2005; Juen et al., 2007; Mark, 2008; Baraer et al., 2009), Himalayas (Hagg et al., 2007; Yong et al., 2010), China (Li et al., 2010; Liu et al., 2010; Wang et al., 2014), the Rockies (Clow et al., 2003; St. Jacques et al., 2013), the Alps (Collins, 2006; Stott and Mount, 2007; Gremaud et al., 2009; 2010; Finger et al., 2012; 2013), and Iceland (e.g. Björnsson and Pálsson, 2008; Crochet, 2013; Bradwell et al., 2013). Enhanced snowmelt and glacial melt will alter the amount of generated runoff and the timing of peak discharge, with discharge projected to fall during dry seasons (e.g. Barnett et al., 2005; Jefferson, 2008; Tague and Grant, 2009). These reductions will increase the vulnerability of water resources in catchments which are impacted by meltwater (IPCC, 2007; Adam et al., 2009; Huss et al., 2010; Taylor, 2013; Thorsteinsson et al., 2014). In contrast to these projections, studies from some glaciated basins have actually reported increasing discharges. However, this water originates from melting ice, which reduces non-renewable reserves (e.g. Huss et al.,
Hence, after crossing a certain threshold, water supply is projected to decrease (Figure 2.2) (Jansson et al., 2003; Mark et al., 2005; Coudrain et al., 2005; Flowers et al., 2005; Aðalgeirsdóttir et al., 2006; Painter, 2007; Casassa et al., 2009; Cauvy-Fraunié et al., 2014).

![Figure 2.2. The relation between glacial mass balance, volume and runoff (Adapted from Jansson et al., 2003. p. 119)](image)

The arrow denotes the threshold after which further reduction in glacial volume will cause runoff to decrease.

Groundwater in catchments which are impacted by snow and icemelt is also projected to alter following climate change and glacier retreat. However, the impact of climate change on groundwater has received much less research than surface water (e.g. Taylor et al., 2013). Due to the variety of water sources within proglacial environments, any assessment of changes in groundwater due to climate change needs to encompass the dynamic interactions between snowmelt, icemelt and groundwater contributions (Malard et al., 2006; Milner et al., 2009). Climate change models generally project an increase in air temperature and alteration in the magnitude and timing of precipitation events. These projections will alter the dynamics and distribution of snow, such as an increase in the rain/snow ratio (e.g. Adam, 2009; Okkonen et al., 2009; Crochet, 2013), which will affect recharge. The increase in temperatures, evapotranspiration, and the extent of dry periods
is projected to reduce groundwater levels during the summer (Mäkinen et al., 2008). Winter runoff and flooding are projected to increase due to the increase in rain/snow ratio (Adam et al., 2009). However, the increase in runoff and the earlier peak in melt is projected to reduce spring recharge, which will subsequently lower summer baseflow (Tague et al., 2007; 2008; Okkonen and Kløve, 2010).

In summary, glaciated basins have unique hydrology, which is controlled by the temporal storage and release of snowmelt, icemelt, and groundwater. This storage substantially impacts the hydrology, ecology, geomorphology and socioeconomic activities of glaciated catchments. However, climate change and glacier retreat are projected to alter the timing of melt and reduce meltwater. These changes are projected to bring adverse outcomes in the long term to communities and ecosystems who rely on meltwater. The storage provided by proglacial groundwater systems can provide some mitigation to the fall in meltwater-dominated surface water discharge (e.g. Hood et al., 2006; Roy and Hayashi, 2008).

2.3. Groundwater flow in glaciated environments

2.3.1. Introduction

This section describes the processes and mechanisms that control groundwater flow and drainage in glaciated catchments. The section begins by describing the roles of geology, geomorphology, and glacier thermal regime on groundwater flow. It then describes groundwater flow during glaciations.

Alongside its importance in proglacial hydrology (e.g. Earman et al., 2006), groundwater can also influence glacier movement (Boulton et al., 1993; 2001; Eyles, 2006; Piotrowski, 2007; Iverson and Person, 2012) and geomorphology (Boulton et al., 2007a, b; Robinson et al., 2008; Meriano and Eyles, 2009; Kehew et al., 2012). Groundwater in glacial
environments also influences water resources management (Meriano and Eyles, 2003; 2009; Person et al., 2007; Finger et al., 2013; Hublart et al., 2013; Khan et al., 2014), economic activities, such as mining (e.g. Melvold et al., 2003), and the disposal of nuclear waste (e.g. Normani and Sykes, 2012; Vidstrand et al., 2013; Hartley and Joyce, 2013). Groundwater contributions also substantially impact proglacial ecology (Milner and Petts, 1994; Gibert and Culver, 2009; Roy et al., 2011). However, despite its importance, groundwater in glacial environments has received much less research than surface water (e.g. Dragon and Marciniak, 2010; Radić and Hock, 2014).

2.3.2. Processes of groundwater flow in glaciated environments

The understanding that glaciers can flow over soft, deformable beds, rather than merely over hard bedrock, has only developed within the last three decades (Boulton, 1986). However, this paradigm shift is essential for the explanation of significant aquifers which are found in proglacial zones underlain by permeable deposits and in karst areas (e.g. Goldscheider and Gremaud, 2010). Groundwater flow underneath glaciers is generally controlled by similar mechanisms to the ones which control groundwater flow within confined aquifers in non-glaciated areas (e.g. Piotrowski, 2007). Water flow within a porous bed is governed by Darcy’s Law (Equation 2.1)

\[
Q = (KA) \left(\frac{dh}{dl} \right)
\]

Equation 2.1. Darcy’s Law of groundwater flow (1856)

With \(Q \) denoting groundwater flow flux (\(m^3/\text{day} \)), \(K \) the hydraulic conductivity, \(A \) the flow cross-sectional area, \(h \) the hydraulic head and \(l \) the flow length (Darcy, 1856). The hydraulic head \(h \) (Equation 2.1) is a key parameter in hydrogeology. It is calculated as the
sum of the elevation head (the elevation of water level measured at the base of the piezometer above a datum) and the pressure head (the length of the water column) (e.g. Domenico and Schwartz, 1998). Groundwater flow is driven by the gradient between hydraulic heads \(\left(\frac{dh}{dl} \right) \), with groundwater flowing from high to low hydraulic heads. The hydraulic gradient of unconfined groundwater flow systems in non-glaciated environments is generally determined by topography (e.g. Tóth, 1963; 2009; Freeze and Cherry, 1979).

In contrast to that, the hydraulic gradient of subglacial groundwater is mainly determined by the ice-surface slope and the overburden ice pressure, with the subglacial groundwater flow lines mirror-imaging the ice sheet flow lines (Shreve, 1972; Fountain and Walder, 1998). Therefore, basal meltwaters will enter the substrate (forming groundwater recharge) if the pressure at the ice/bed interface exceeds the pressure at the glacial bed (Piotrowski, 2007; Lemieux et al., 2008a). The potentiometric surface of groundwater confined by a glacier stretches approximately parallel to the ice surface, with its height corresponding to the water pressure (Piotrowski, 2007). Using water pressures estimated from fine-grained sediments of overridden till, Piotrowski (1997a) calculated the potentiometric surface to equal roughly 72% of the ice thickness. Other observations from consolidated glacial sediments and current measurements of water pressure underneath the West Antarctica Ice Sheet have shown that hydraulic heads at the base of ice sheets were within 30% of the ice flotation value, with average heads being less than 7 m below flotation level (Iverson and Person, 2012). Conversely, at the glacier margin, the pressure within the aquifer becomes lower, which increases groundwater discharge. Additionally, the fall in pressure (exerted by the glacier) also alters the aquifer from confined to unconfined (Haldorsen et al., 2010; 2012).

Subglacial groundwater may include components of snow melt and the melt of supraglacial, englacial and subglacial ice, which are routed and joined at the glacier bed. Supraglacial and englacial ice melt are routed to the glacier bed through fractures,
crevasses, moulins, and cavities (Figure 2.3) (e.g. Nienow et al., 1998; Cowton et al., 2013). The efficiency of these drainage paths is significantly controlled by climatic conditions and the glacier’s thermal regime (Röthlisberger and Lang, 1987; Richards et al., 1996; Bell, 2008; Gulley et al., 2009; Rutter et al., 2011; Irvine-Fynn et al., 2011; Chu, 2014; Hodgkins et al., 2013; Dahlke et al., 2014). In addition to the meltwater which has reached the glacier bed via the routes depicted in Figure 2.3, subglacial groundwater also consists of water which are generated at the glacier bed by ice deformation and ice melt which is caused by geothermal heat and basal friction (e.g. Piotrowski, 2007).

Figure 2.3. The supraglacial, englacial, and subglacial drainage routes by which snow and ice melt reach the glacier sole. Adapted from Irvine-Fynn et al. (2011)

The ability of the glacier bed to drain meltwater as groundwater is a key control on glacial motion and stability (e.g. Boulton and Zatsepin, 2006; Meierbachtol et al., 2013). The
Chapter 2

Literature Review

drainage capacities of the glacier bed exert a key control on the effective pressure of the glacier bed, which is the difference between the overburden pressure and pore-water pressure. The effective pressure is controlled by the interaction between meltwater supply and the drainage capacity of the glacier bed. Failure to evacuate the meltwater increases pore water pressure, which can lower the effective pressure below the critical level for failure. This can cause decoupling between the bed and glacier, which reduces the strength of the subglacial sediments, which bears potential for shear sediment deformation and enhanced glacier movement (Kamb, 1987; Boulton et al., 2009; Hoffman and Price, 2014). In addition to drainage capacity, the temperature at the glacier bed also controls glacial stability, as an ice/bed interface which is at or above the Pressure Melting Point (PMP) temperature will generate water at the bed. This water must be drained in order to maintain glacial stability (e.g. Fountain and Walder, 1998).

Subglacial drainage systems are broadly divided into efficient (channelized) and inefficient (distributed) systems (e.g. Hubbard and Nienow, 1997; Fountain and Walder, 1998; Irvine-Fynn et al., 2011). An efficient drainage system is composed of subglacial tunnels that either arch up into the ice (R channels; Röthlisberger, 1972) or carve into the glacial bed (N channels; Nye, 1973). An efficient drainage system can effectively transfer large water fluxes from the bed to the glacier margin. Therefore, sudden changes in drainage efficiency, caused by rapid fluctuations in water supply or channel blockage, which takes place when meltwater encounter zones of low hydraulic conductivity or frozen beds, can reduce glacial stability. R channels can quickly adjust to fluctuating water fluxes, hence, they serve as important stabilising mechanisms for ice sheets (Boulton et al., 2009).

In contrast to the rapid meltwater flows within efficient drainage systems, a distributed (inefficient) glacial drainage system is characterized by low flow velocities. Water flow within a distributed system takes place through linked cavities on irregular bedrock (Kamb, 1987), a thin film (~1 mm) at the bed/ice interface, which is generated by regelation (Weertman, 1972), “canal” systems within soft subglacial sediments (Walder and Fowler,
1994) and groundwater flow through subglacial sediments (Boulton and Hindmarsh, 1987). The slow flow velocity within distributed systems raises the water pressure as the water flux rises, which can then approach the ice overburden pressure and lead to decoupling between the glacier and the bed (Boulton et al., 2007a). The seasonal evolution of the glacial drainage system has been studied extensively. Generally, an inefficient distributed drainage system operates at the start of the melt season, with drainage shifting into an efficient system as the melt season progresses. At the end of the melt season, the distributed drainage is resumed. These seasonal dynamics also impact groundwater flow, which is generally higher when the drainage system is efficient. Despite considerable variability, this general pattern has been reported from a variety of different glacial settings (e.g. Hodgkins et al., 1998; Nienow et al., 1998; Mernild, 2004; Chandler et al., 2013; Cowton et al., 2013).

2.3.3. Geological controls on subglacial and proglacial groundwater flow

Similar to non-glacial environments, geology exerts a significant control on subglacial and proglacial groundwater flow and recharge. The understanding that glaciers can be underlain by soft, deformable sediments and permeable beds, as opposed to solely hard bedrock (Boulton, 1986), implies that a portion of the subglacial meltwaters will enter the bed and be directed towards the margin as groundwater. Groundwater drainage is strongly controlled by the hydrogeological parameters of the glacier bed (e.g. Piotrowski, 1997a, b; Janszen et al., 2012; Atkinson et al., 2013). Therefore, substantial groundwater flow has been observed in glaciers underlain by permeable substrates (e.g. Rossi et al., 2012; Boulton et al., 2007a, b; Kehew et al., 2012;), karst systems (e.g. Gremaud and Goldscheider, 2009 Gremaud et al., 2010; Finger et al., 2013), and faults (e.g. Haldorsen and Heim, 1999). Significant groundwater systems have also been reported from proglacial zones which are underlain by coarse alluvial deposits, which sustain significant
aquifers (e.g. Ward et al., 1999; Crossman et al., 2011). These aquifers sustained groundwater flow through the summer months, and became particularly important during periods of low meltwater discharge (Malard et al., 1999). Conversely, groundwater flow in proglacial areas which are underlain by low permeability substrates, such as fine-grained deposits, permafrost, and buried ice is much lower (e.g. Boulton et al., 2007a; Haldorsen et al., 2010; Langston et al., 2011).

The hydrogeological parameters of sorted granular materials in glaciated environments are similar to those found in non-glacial conditions. However, glacial environments are impacted by an array of geomorphic processes, which include glacial, glaciofluvial, lacustrine, and aeolian processes (e.g. Freeze and Cherry, 1979; Bajc et al., 2014). Hence, the hydraulic conductivity of subglacial tills varies over several orders of magnitude, ranging between 10^{-1} and 10^{-7} m/s (Freeze and Cherry, 1979), with significant implications to groundwater fluxes (the K parameter, Equation 2.1).

The hydraulic conductivity of subglacial till is controlled by various sedimentological processes. For instance, compression and shear deformation lead to high anisotropic distribution of till properties (e.g. Boulton and Zatsepin, 2006). Laboratory experiments have shown that particle alignment causes horizontal hydraulic conductivity to exceed vertical hydraulic conductivity by up to two orders of magnitude (Murray and Dowdeswell, 1992). Pervasive deformation of till can advect significant amounts of groundwater towards the margin within the high-porosity deforming layer (Alley et al., 1986, 1987). Although such deformation may demolish the drainage paths within the ice/bed interface, it is hypothesised to enhance the drainage through the bed (Murray and Dowdeswell, 1992).

Despite the major gaps in knowledge with regards to the hydrogeological properties of glacial deposits, it is safe to conclude that they are subject to high spatial and temporal variability, imposed by the stresses applied by the overriding glaciers, source material,
and secondary processes (e.g. Domenico and Schwartz, 1998; Fischer and Clarke, 2001; Evans et al., 2006). This variability in the hydrogeological properties of glacial deposits is an important control on the spatial variability in proglacial groundwater flow (e.g. Robinson et al., 2008; Roy and Hayashi, 2008; Langston et al., 2013). In addition to the aforementioned processes, the field sites in southern Iceland are also substantially impacted by volcanic activity and jökulhlaups (e.g. Marren, 2005). This wide variability in geomorphic processes leads to high variability in depositional environments and hydrogeological parameters, which may significantly impact subglacial and proglacial groundwater flow (e.g. Bajc et al., 2014).

2.3.4. The impact of geomorphology on proglacial groundwater flow

Geomorphology also exerts an important control on proglacial groundwater flow. For instance, moraines have a complex, heterogeneous internal structure, which leads to various hydrogeological conditions, such as coarse-grained deposits, stepped and perched water tables (e.g. van Overmeeren, 1994; Robinson et al., 2008; Langston et al., 2011; Bajc et al., 2014). Fully or partially impermeable layers (buried ice, ground ice, and bedrock) can direct groundwater flow and focus it towards areas where water can infiltrate into the deeper flow system (Langston et al., 2011). Additionally, impermeable layers can also prevent groundwater recharge and lead to perched water tables (e.g. Robinson et al., 2008). The heterogeneous hydrogeology within moraines has been shown to generate different groundwater residence times, which impacts groundwater quality and groundwater-surface water exchange (Roy and Hayashi, 2008; 2009).
Coarse proglacial deposits, such as talus, also significantly impact groundwater flow and storage. Studies from the Colorado Rockies suggested that groundwater from talus deposits contributed over 60% (Liu et al., 2004) and 75% (Clow et al., 2003) of total streamflow between early summer and late fall. Furthermore, talus provided important storage for groundwater from snowmelt recharge, with groundwater contributions from the talus continuing even after the disappearing of snow (e.g. Muir et al., 2011). The impact of geomorphology on groundwater flow was also reported from the Cordillera Real in Bolivia, where experimental tracer studies have shown that groundwater flow through talus slopes exceeded groundwater flow through moraines by 24 hours (Caballero et al., 2002). In addition to talus slopes, eskers also contain highly permeable deposits, which sustain substantial aquifer systems. Studies of esker aquifers in Finland have shown significant exchange between groundwater and surface water, which substantially impacted surface water quality and levels (Rossi et al., 2012, Ala-aho et al., 2013).
In addition to the impact of high-permeability landforms on groundwater flow, the impact of low-permeability landforms and substrates also substantially impact proglacial groundwater systems. For instance, the low permeability of permafrost, which acts as an aquitard, substantially impedes groundwater recharge and discharge (e.g. Haldorsen and Heim, 1999; Lemieux et al., 2008a; Bense et al., 2009; Scheidegger et al., 2012; 2014). However, seasonal shallow groundwater flow takes place in some catchments which contain permafrost. Shallow groundwater in such catchments is therefore strongly controlled by the seasonal development of the active layer (e.g. Carey et al., 2013). Although western Skeiðarársandur and the Skaftafellsjökull foreland are not underlain by permafrost, the sites are probably impacted by seasonally-frozen ground, which impedes groundwater recharge and increases runoff. However, such conditions were not observed during the fieldwork undertaken and are beyond the scope of this study.

The aforementioned studies illustrate the high variability in proglacial geomorphology, which substantially impacts proglacial groundwater systems. The field sites in Iceland also have high variety in depositional environments and geomorphology, which include glacial, glacifluvial, and lacustrine landforms. It is therefore expected that the variability in proglacial hydrogeology and groundwater flow will be high.

2.3.5. The impact of glacial thermal regime on groundwater flow

Glacier thermal regime is a key control on subglacial groundwater recharge and flow. Glaciers are classified according to their thermal regime: Temperate (warm based), polythermal, and cold-based glaciers. Temperate glaciers contain ice whose temperature are near the Pressure Melting Point (PMP) throughout the glacier, with the exception of a thin surface layer which freezes during the winter, but is removed by melt in the following summer (Ahlmann, 1935, cited in Hodgkins, 1997). Temperate glaciers can be found in
various glacial environments between mid and sub-polar latitudes. These glaciers experience large mass transfers from the accumulation to the ablation zone. Temperate glaciers move by internal deformation, sediment deformation, and basal sliding. This sliding can lead to the fracturing of near surface ice and the formation of crevasses, which route meltwater to the glacier bed. In addition to that, the relatively high motion of temperate glaciers enhances meltwater generation at the glacier sole. Therefore, temperate glaciers which override permeable substrates generally have significant groundwater drainage systems (e.g. Piotrowski, 2007).

In contrast to temperate glaciers, the ice temperatures of cold-based glaciers are lower than the PMP. Hence, melt plays a minimal role in ablation, which mainly occurs by sublimation or calving. Meltwater penetration into the bed of cold-based glaciers is also low, due to the lack of englacial drainage routes. This paucity is a result of the slow rates of deformation of cold based glaciers, which reduces the formation of crevasses. Additionally, the formation of superimposed ice, which occurs on the glacier surface by the refreezing of meltwater also reduces englacial drainage (Hagen et al., 1991; Hodgkins, 1997; Gulley et al., 2009). Observations from Svalbard show that superimposed ice bears an important influence on drainage during the early melt season, as it serves as an aquitard, preventing water from entering the glacier, and causes it to form lakes within depressions. The absence of meltwater lubrication causes cold glaciers to move slowly, mainly by internal creep, which significantly reduces their rates of movement and crevassing. This reduces both their impacts as geomorphic agents (Eyles, 2006) and hydrologically induced flow instabilities (Bingham et al., 2006). Groundwater underneath cold based glaciers is therefore suggested to be low (Haldorsen et al., 2010).

Polythermal glaciers consist of ice with spatially heterogeneous temperature distribution. Generally, cold ice is found at the glacier margin and ice at the PMP upglacier from the margin. Warm-based ice may occur underneath thick sections of the glacier, due to the higher pressures and geothermal heat transfer. As glacial drainage is substantially
controlled by the basal thermal regime, the distribution of temperate ice within polythermal glaciers is an important control on groundwater drainage underneath polythermal glaciers (e.g. Haldorsen et al., 2010).

Glacier thermal regime also impacts subglacial and proglacial groundwater systems through its impact on permafrost formation. Permafrost distribution is significantly impacted by glaciation conditions, as ice sheets insulate the ground from lower surface temperatures, which prevents permafrost development. When an ice sheet develops over existing permafrost, it will insulate the permafrost from the low surface temperatures. This will gradually raise permafrost temperatures to the PMP, leading to permafrost migration along the periphery of the ice sheet margins (Lemieux et al., 2008). The glacier beds at Skeiðarársandur and Skaftafellsjökull are temperate and permafrost-free (Marren 2002; Robinson et al., 2008). Hence, further discussion about cold based, polythermal glaciers, and permafrost lies beyond the scope of this study.

2.3.6. Groundwater flow underneath past ice sheets

The development of ice sheets and glaciers over permeable substrates alters the groundwater systems within these substrates from being topographically-controlled, precipitation-fed systems to ones which are pressurized and recharged by the overlying ice (e.g. Haldorsen and Heim, 1999; Haldorsen et al., 2010). Additionally, changes in glacial conditions also alter the loading and relaxation stresses on the underlying sediments. These alterations lead to substantial changes in the direction, magnitude and composition of groundwater flow (Lemieux et al., 2008a,b; Person et al., 2007a,b; Bense and Person, 2008; 2009; Lemieux and Sudicky, 2010; Normani and Sykes, 2012; Person et al., 2012; Provost et al., 2012; Grundl et al., 2013). Studies of groundwater flow underneath former ice sheets and glaciers have significantly contributed to the understanding of glacial movement and geomorphology, particularly the origins of tunnel valleys and eskers, which indicate areas with a surplus of basal meltwaters (Piotrowski,
Chapter 2 Literature Review

2007; Boulton et al., 2007a, b; Boulton et al., 2009; Kehew et al., 2012). However, the attempts to quantify the amount of meltwater that discharged the major ice sheets during the last glaciation as groundwater have also caused many controversies in the literature.

Some models suggested that glaciers positioned over aquifers with sufficiently high hydraulic transmissivity were able to drain most meltwater as groundwater. For instance, Boulton and Dobbie (1993) suggested that during the Saalian glaciation, areas in the Netherlands were able to drain the entire meltwater supply as groundwater. Using a higher melting rate (25 mm/year) when modelling the groundwater flow along the transect from the Scandinavian ice divide to the periphery in the Netherlands, Boulton et al. (1995) also reached similar conclusions. However, their modelled aquifer only had one input of hydraulic conductivity (3.00×10^{-4} m/s), which corresponds to the conductivity of sand. However, this modelled homogenous aquifer clearly ignores the high variability of hydraulic conductivity which is found within glacial deposits (e.g. Freeze and Cherry, 1979; Meriano and Eyles, 2009).

The approach of a homogenous aquifer, suggested that substantial proportions of meltwater discharged as groundwater from the European ice sheets (e.g. Boulton and Dobbie, 1993; Boulton et al., 1995), have been contested by numerical models and field evidence from relict ice sheets in Europe and North America. For instance, a 3D groundwater flow model that did account for the heterogeneity of Quaternary sediments suggested that only ~25% of meltwater was evacuated as groundwater through the bed. The model also suggested that the remaining water drained through subglacial channels in spontaneous bursting episodes (Piotrowski, 1997b; Piotrowski et al., 2009). The relatively low proportion of groundwater drainage is also supported by field observations of tunnel valleys, some up to 80 metres deep, which were found at the study area (Piotrowski, 1994). Modelling of groundwater drainage from Nordfjord, Norway, suggested that initially, the entire basal meltwater drained as groundwater. However, as deglaciation progressed, only 14-38% of the basal meltwater drained as groundwater. The model
suggested that the addition of surface meltwater exhausted the capacity of groundwater drainage, which generated the formation of alternative drainage routes (Moeller et al., 2007). Estimations from North America also suggested that relatively small proportions of meltwater were discharged via the aquifer. Models of the Laurentide Ice Sheet hydrology, suggest that only around 5-10% of meltwaters drained as groundwater (Person et al., 2007a). Models of the Laurentide Ice Sheet’s Lake Michigan Lobe have shown that even when the hydraulic conductivity of the entire bed is increased by two orders of magnitude, the aquifers were still not capable of draining the entire meltwater supply and maintain the pore-water pressure below the overburden pressure (Breemer et al., 2002). Modelling of the impact of the Wisconsian glaciation on groundwater flow in Canada suggested that 43% of the melt drained away as groundwater. However, these higher estimations were calculated using conservative melt rates (Lemieux et al., 2008a). Other research from Europe (Piotrowski and Kraus, 1997) and North America (Brown et al., 1987) also suggested that relatively small proportions of meltwaters were evacuated as groundwater. These studies suggest that significant proportions of meltwater would be transmitted to the proglacial zone as groundwater. However, overall, groundwater was not the main route of meltwater discharge.

2.3.7. Summary

Subglacial and proglacial groundwater flow is described by similar mechanisms to groundwater systems in non-glaciated systems. However, subglacial groundwater systems are driven by the pressure of the overburden ice rather than topography. The characteristics of the substrate exert key controls on groundwater flow, with thick coarse, unconsolidated substrates leading to substantial groundwater flow. Proglacial geomorphology is also an important control on proglacial groundwater flow, with landforms such as talus slopes, eskers, and moraines supporting extensive aquifer systems. However, the internal hydrology of these features can be highly heterogeneous.
The englacial and subglacial drainage systems, alongside glaciation conditions, which control basal thermal regime and the extent of permafrost, also exert key controls on subglacial and proglacial groundwater systems. The quantification of groundwater flow beneath past ice sheets has led to significant controversies. Some studies have suggested that substantial amounts of the overall melt discharged as groundwater, whilst others suggested much smaller proportions of melt were discharged in this way. Skeiðarársandur and Skaftafellsjökull are temperate glaciers, which are generally underlain by permeable beds, hence, contributions of glacial melt to groundwater flow is expected to be significant. However, the variability in hydrogeological parameters at the sites is also expected to be high. This section described the main mechanisms and controls on groundwater flow in glaciated environments. The following section builds on this knowledge to describe the controls and impact on proglacial groundwater-surface water exchange.

2.4. Groundwater-surface water exchange

2.4.1. Introduction

This section describes the importance, key concepts, and main controls of groundwater-surface water exchange. The interaction between groundwater and surface water substantially controls the physicochemical parameters and the cycling of energy, carbon, and nutrients between both systems (e.g. Brunke and Gonser, 1997; Bencala et al., 1993; Krause et al., 2009; Young et al., 2010). Additionally, this interface also impacts water quality and provides natural attenuation for certain pollutants by mixing, sorption, and biodegradation processes (e.g. Krause et al., 2009; Byrne et al., 2014; Neumann et al., 2013; Ullah et al., 2014; Weatherill et al., 2014; Chang and Yeh, 2014). The impact of proglacial groundwater-surface water exchange on water physicochemical parameters and ecology has also been studied in various proglacial settings (e.g. Brown et al., 2007a, b; Roy et al., 2010; Gooseff et al., 2013). However, the understanding that groundwater
and surface water are integrated, rather than separated components of the hydrological cycle has only increased significantly within the last three decades (e.g.; Winter and Rosenberry, 1995; Winter et al., 1998; Krause et al., 2009; 2014; Fleckenstein et al., 2010).

It is important to increase our understanding of groundwater-surface water interactions in order to improve the management of rivers and lakes, particularly in response to projected changes in climate and land use (e.g. Smerdon et al., 2005; 2012; Schmidt et al., 2010; Kidmose et al., 2013; Muellegger et al., 2013; Khan et al., 2014; Ullah et al. 2014:). Additionally, improved understanding of groundwater-surface water exchange will also help to implement legal directives such as the European Union’s Water Framework Directive (WFD) (e.g. CEC 2000; EA 2009; Krause et al., 2014).

The mixing between groundwater and surface water takes place at the hyporheic zone (HZ), which forms the saturated zone between groundwater and surface water (Figure 2.5). The HZ derives its physicochemical and biogeochemical characteristics from the active mixing between groundwater and surface water, hence, it is characterised by sharp chemical gradients in Dissolved Oxygen (DO) and redox potential (Boulton et al., 1998), high biogeochemical activity (e.g. Gooseff et al., 2003), and highly specialised flora and fauna (Ward and Stanford, 1989; Brunke and Gonser, 1997; Kløve et al., 2011a, b).
Hydrological connectivity is an important concept in the study of groundwater-surface water exchange. Hydrological connectivity describes water-mediated transfer of energy, matter, and or organisms within or between different components of the hydrological cycle (Pringle, 2003). The concept of hydrological connectivity has been used extensively in riverine landscapes, including proglacial environments (e.g. Tockner et al., 1997). The interactive pathways within riverine landscapes occur along three spatial dimensions: vertical (river-groundwater), lateral (river-riparian zone-floodplain), and longitudinal (headwater-estuary) (e.g. Ward and Stanford, 1989). Complex patterns of hydrological connectivity have been reported from various proglacial environments (e.g. Tockner et al., 1997; Ward et al., 1999; Cooper et al., 2002; 2011; Crossman et al., 2011). For instance, studies from the Val Roseg catchment, a complex alluvial valley in the Swiss Alps, which is formed in glacial outwash, suggested that the valley contained various types of
Chapter 2

Literature Review

channels, such as the main channel, side channels, intermittently-connected channels, mixed channels, groundwater channels, and tributaries. Hence, groundwater-surface water interaction at the catchment takes place on various spatial scales (Ward et al., 1999).

The temporal variability in groundwater-surface water exchange is mainly controlled by climatic/meteorological conditions (e.g. Fairchild et al., 1999b; Aragón et al., 2011; Ward et al., 2013; Kirillin et al., 2013). However, anthropogenic activities, such as the operation of dams, can also exert important controls on groundwater-surface exchange (e.g. Sawyer et al., 2009; Francis et al., 2010). Groundwater-surface water exchange within proglacial environments is mainly controlled by meltwater levels which vary on diurnal, seasonal, annual and decadal time scales (Hubbard et al., 1995; Brown et al., 2006; Cauvy-Fraunié et al., 2013). Additionally, low frequency, high magnitude events, such as floods and jökulhlaups can also impact proglacial groundwater-surface water exchange (Cooper et al., 2002; 2011; Kristiansen et al., 2013).

2.4.2. The impact of topography on proglacial groundwater-surface water exchange

Groundwater-surface water exchange is substantially impacted by topography and the position of surface water features within the landscape. Groundwater flow systems generally form a subdued replica of the surface (e.g. Hubbert, 1940; Freeze and Cherry, 1979). Groundwater flow systems in areas of irregular topography are divided into local, intermediate, and regional flow systems, which are nested in this ascending order (Tóth, 1963). Local groundwater systems flow to a nearby discharge location, such as streams and ponds. Regional groundwater flow systems travel longer distances than local ones, and discharge into the oceans, major rivers, or large lakes. Intermediate flow systems have one or more topographic high and low found between its recharge and discharge area. However, in contrast to the regional flow system, it does not contain both a major
topographic high and low (Tóth, 1963; 1999). The interaction between groundwater and streams, lakes, ponds, and wetlands is controlled by the position of these water bodies with respect to the groundwater systems. Local groundwater flow systems are generally found in areas of higher topographic relief, while intermediate and regional groundwater systems are generally found in areas of low relief. For instance, studies from Skeiðarársandur suggested that the regional groundwater flow system flows away from the glacier margin, towards the coast. The local groundwater systems at the site were found in areas of higher topography, and were generally located in moraine areas (Figure 2.6) (Robinson et al., 2008).

Figure 2.6. Conceptual model of the different scales of groundwater flow systems in western Skeiðarársandur.

In addition to high frequency, low magnitude accumulation and ablation processes, the area is also impacted by glacier surges and jökulhlaups. Adapted from Robinson et al. (2008).
The position of surface water systems within the landscape is an important control on groundwater-surface water exchange, with surface water bodies (e.g. lakes and ponds) connected to local groundwater flow systems reported to have lower exchange with the groundwater systems than surface water bodies connected to intermediate and regional groundwater flow systems (e.g. Campbell et al., 2004). These patterns have been reported from an array of hydrogeological settings, including boreal forests (Smerdon et al., 2005), alpine ridges (Campbell et al., 2004), esker aquifers (Ala-aho et al., 2013), and proglacial outwash plains (sandurs) (Bahr et al., 1997; Robinson et al., 2008). These differences in groundwater-surface water exchange also lead to substantial differences between the hydrology and biogeochemistry of lakes and ponds in topographically-high and topographically-low areas (e.g. Campbell et al., 2004).

The connectivity of lakes and ponds with groundwater systems is also an important control on their vulnerability to climate change, in situations where groundwater discharge increases surface water levels. Hence, lakes and ponds with lower connectivity to groundwater systems, which can buffer the projected falls in meltwater, are more vulnerable to projected changes in precipitation (e.g. Young et al., 2010; Ala-aho et al., 2013).

2.4.3. The impact of hydrogeology and geomorphology on proglacial groundwater-surface water exchange

Similar to their impact on groundwater flow, hydrogeology and geomorphology also exert important controls on groundwater-surface water exchange. Surface water features with low permeability beds generally have lower rates of exchange with the groundwater systems, as reported from an array of hydrogeological settings, including wetlands underlain by clay deposits (Ferone and Devito, 2004), lakes underlain by low-permeability beds (e.g. Roy and Hayashi, 2008; Shaw et al., 2013), and streambeds with high
proportion of fine-grained sediment (e.g. Conant, 2004). The hydraulic gradient between the surface water body and groundwater is also an important control on the interface between groundwater and rivers (e.g. Storey et al., 2003; Hannah et al., 2009; Krause et al., 2012), wetlands (Ferone and Devito, 2004), and lakes (e.g. Smerdon et al., 2005; Kirillin et al., 2013). Hydraulic gradients in proglacial environments are substantially impacted by meltwater levels, which vary on a diurnal, seasonal, annual and episodic basis (e.g. Cooper et al., 2002; Dragon et al., 2014). Proglacial groundwater-surface water exchange is also controlled by the prevalent high variability in hydrogeological parameters. This variability is caused by the array of geomorphic processes (e.g. Marren et al., 2005; Robinson et al., 2008; Bajc et al., 2014) and high sediment heterogeneity that is prevalent in these environments (e.g. Malard et al., 1999; Hoehn and Meylan, 2009; Magnusson et al., 2014).

Geomorphic variability is also an important control on groundwater-surface water exchange (e.g. Kalbus et al., 2006; Norman and Cardenas, 2014). For instance, field observations have shown that coarse-grained landforms such as talus and moraines provided significant exchange between proglacial groundwater, lakes, and streams (e.g. Hood et al., 2006; Roy and Hayashi, 2008; 2009). Additionally, talus and rock glaciers also provided storage of groundwater recharge, some of which originated from snow and icemelt, which was then slowly released into streamflow (e.g. Clow et al., 2003; Liu et al., 2004).

In addition to the impact of large-scale landforms on groundwater flow, smaller scales of landforms are also important for groundwater-surface water exchange. For instance, a study from a losing stream in the Colorado Rockies has shown the impact of bed morphology on groundwater-surface water exchange, where stream water entered the alluvium and re-emerged after a short distance. Recharge and discharge took place at locations of transitions in bed slope, such as the transition between pools and steeper units (Harvey and Bencala, 1993). The impact of streambed topography on hyporheic
exchange has also been reported from a gravel-bed stream in Idaho (Gariglio et al., 2013). The impact of geomorphic features such as pools and riffles in lowland rivers, which impact river-aquifer exchange through their control on stream velocity, bed sedimentology and hydraulic conductivity, has also been reported (e.g. Käser et al., 2009).

Preferential Flow Paths (PFP) also exert important control on groundwater-surface water exchange. Soil pipes, which are made from connected subsurface macro pores are an important example of a PFP. These features were commonly observed in various settings of hill slope hydrology, including glaciated environments (Faeh, 1997; Uchida et al., 2001; Cozzetto et al., 2013). For instance, pipe flow at the boundary between frozen and unfrozen streambed sediments has served as a PFP in the hyporheic zone of a stream in Antarctica. The hyporheic exchange acted as a positive feedback, where the PFP enhanced hydrological connectivity and flow due to its impact on water viscosity and temperature (Cozzetto et al., 2013). The impact of PFP on subsurface water and solute storage and catchment biogeochemistry has also been reported from a field site in Alaska, where the flow paths were observed along the boundary between thawed ground and the permafrost (Koch et al., 2013). Water tracks are zones of high soil moisture which route water downslope over the ice table in polar environments, such as the Dry Valleys of Antarctica (Levy et al., 2011). These features were observed to transport water, energy, and nutrients between streams and lakes in Antarctica’s Dry Valleys, which makes them important enhancers of hydrological connectivity. Although their magnitude is substantially smaller than that of meltwater discharge, the solute content of the water tracks is equal to or higher than that of streamflow. Hence, water tracks serve as important hydrological pathways, which substantially impact the geochemistry of streams and lakes (Levy et al., 2011).
2.4.4. The impact of climatic conditions on groundwater-surface water exchange

Climatic factors are also important controls on groundwater-surface exchange. Rainfall and evaporation are important controls on the levels of shallow groundwater and surface water bodies (e.g. Roy and Hayashi, 2008). These factors also affect the gradient between groundwater and surface water, which impacts hydrological exchange. For instance, rising river stage can reduce the hydraulic gradient between the river and aquifer, which can then reduce exchange (Karan et al. 2014). During substantial rainfall events this can also cause flow reversals with river stage rising so that it recharges groundwater, which can also alter the solute concentrations and biogeochemistry of the river and aquifer (e.g. Cooper et al., 2002; Bartsch et al., 2014). Evapotranspiration, which lowers shallow groundwater and surface water levels, hence impacting the gradient between groundwater and surface water, also exerts a control on groundwater-surface water exchange (e.g. Lewandowski et al., 2009). Within glacial environments, climate exerts a strong control on snow and ice melt, which are primary controls of groundwater and surface water exchange in proglacial environments through its impact on discharge levels (e.g. Brown et al., 2006). Climate also controls evaporation and ice formation, which also impact groundwater-surface exchange, with the low permeability of ice limiting groundwater-lake exchange (e.g. Smerdon et al., 2005; Kirrillin et al., 2013; Blume et al., 2013).

2.4.5. Monitoring of groundwater-surface water exchange

The spatial patterns of groundwater-surface water exchange can vary on a scale of centimetres to meters in streams (Brunke and Gonser, 1997; Brunke et al., 2003; Kalbus et al., 2007; Roy et al., 2011; Krause et al., 2012) and lakes (Kidmose et al., 2011; 2013; Blume et al., 2013). Additionally, groundwater-surface water exchange also exhibits
substantial temporal variability (e.g. Hubbard et al., 1995; Smerdon et al., 2005; Kirillin et al., 2013). It is therefore important to have methods that can accurately, simply, and unobtrusively characterize this fine scale spatial variability in groundwater-surface water exchange. The chosen methods also need to be appropriate for the respective aims of the investigation (e.g. Kalbus et al., 2006; Schmidt et al., 2007). The main methods which are covered in this literature review are based on direct measurements, environmental tracers, and hydrogeological measurements. However, this literature review only provides a general description of the methods. Further information can be found in individual research articles and in general (e.g. Kalbus et al., 2006) and method-specific (e.g. Anderson, 2005b; Rau et al., 2014) literature reviews and special issues of publications (e.g. Krause et al., 2009a, b; 2014; Fleckenstein et al., 2010).

Direct measurements of water fluxes between groundwater and surface water are usually performed using seepage meters, composed of a bottomless cylinder, which is inserted into the sediment, and a deflated bag, which collects water fluxes between the aquifer and surface water. Water fluxes can then be calculated from the cross section area of the cylinder, collected volume, and the time taken to fill the bag (e.g. Lee, 1977; Kalbus et al., 2006). This method has been used extensively in streams (Murdoch and Kelly, 2003), lakes (e.g. Rautio and Korkka-Niemi, 2011; Ala-aho et al., 2013), and wetlands (e.g. Hunt et al., 1996). Seepage meters provide direct measurements at relatively low cost. However, seepage meters only provide point measurements and may not reflect substrate heterogeneity effectively (e.g. Kalbus et al., 2006). Additionally, seepage meters are also subjected to uncertainties such as bag distortion, folding, and other technical difficulties. However, some of these uncertainties can be overcome by technological advances, such as automated seepage meters (e.g. Krupa et al., 1998; Paulsen et al., 2001; Sholkovitz et al., 2003).

Environmental tracers investigate groundwater-surface water exchange assuming significant differences between end-members (e.g. Rossi et al., 2012). The main
environmental tracers which are used to study groundwater-surface water exchange are temperature, Electrical Conductivity (EC), water stable isotopes ($\delta^{18}O$ and δD), and solute concentrations. Temperature has been used increasingly as a tracer for groundwater-surface water exchange, exploiting the relative stability of groundwater temperatures, in comparison to the higher variability of surface water temperature (e.g. Anderson, 2005b). Significant temperature differences between groundwater and surface water can therefore be used to identify the general behaviour of a reach (whether it is impacted by groundwater upwelling or downwelling), with gaining reaches characterised by relatively stable pore-water and surface water temperatures (e.g. Winter et al., 1998; Krause et al., 2012). Conversely, losing reaches are characterized by high variability in pore-water and surface water temperatures (Constantz, 1998; Constantz and Stonestrom, 2003; Kalbus et al., 2006). The significant differences between groundwater and meltwater temperatures, therefore make temperature an especially useful tracer for proglacial groundwater-surface water exchange (e.g. Schneider et al., 2011; Ala-aho et al., 2013; Tristram et al., 2015). The use of temperature in investigating groundwater-surface water exchange has substantially increased in the last two decades. This increase has been stimulated by the increasing availability of robust, inexpensive, and simple heat sensors and technologies such as Fibre Optic Distributed Temperature Sensing (FO-DTS), which provide temperature monitoring at very high spatial and temporal resolutions (e.g. Selker et al., 2006a, b).

Temperature profiles from the sediment-water interface and the lake/stream bed can be used in various ways to infer and quantify groundwater discharge into streams and lakes. For instance, temperature profiles are used to solve the heat transport equation, which is analogous to the advection-dispersion equation of solute transport in groundwater (e.g. Suzuki, 1960; Hatch et al., 2006). Temperature measurements which are taken in high spatial and temporal resolution from a stream/lakebed can also be used to investigate groundwater-surface water exchange. This approach assumes that the measured
temperature variations can be attributed to spatial, rather than temporal, variations in groundwater-surface water exchange (e.g. Conant, 2004; Schmidt et al., 2006; 2007). Another approach which uses temperature to investigate groundwater-surface water exchange applies a heat balance equation, where surface water temperatures are a function of groundwater discharge, the differences between groundwater and surface water temperatures, and additional heat fluxes through the stream surface (Becker et al., 2004).

Geochemistry and water stable isotopes, notably δ18O and δD, have also been used as environmental tracers in various proglacial environments (e.g. Roy and Hayashi, 2008; 2009; Robinson et al., 2009b; Flaim et al., 2013). These methods are based on the different geochemical and isotopic composition between different recharge sources, which result from the different controls and hydrological processes which impact the different end-members (e.g. Tranter et al., 1993; Robinson et al., 2009a, b). These distinct compositions have been previously used to investigate various hydrological issues such as sources of recharge (e.g. Fairchild et al., 1999b), hydrological flow paths (e.g. Gooseff et al., 2013), hydrological pathways and residence time (e.g. Boucher and Carey, 2010), hydrograph separation (Williams et al., 2006), and groundwater-surface water exchange (e.g. Roy and Hayashi, 2009). Radon (222Rn), which is used to measure the residence time of groundwater, has also been increasingly used as a tracer for groundwater-surface water exchange (e.g. Dugan et al., 2012; Kluge et al., 2012; Diova et al., 2013; Magnusson et al., 2014). Geochemistry and stable isotopes provide simple, relatively inexpensive measurements. However, these methods only provide point measurements, which can lower the spatial resolution (e.g. Yde et al., 2008; Hindshaw et al., 2011). Additionally, investigating groundwater geochemistry and stable isotopes requires infrastructure for the collection of water samples, which may be difficult in remote and protected areas (e.g. Cooper et al., 2011).
Groundwater-surface water exchange can also be investigated using surface water levels and hydraulic heads. These measurements can be used to map horizontal and vertical groundwater flow direction which can then be used to infer groundwater-surface water interaction (e.g. Drexler et al., 1999; Magnusson et al., 2014). Additionally, such measurements, in addition to the hydraulic conductivity, can also be used to calculate groundwater seepage (Darcian) fluxes (e.g. LaBaugh et al., 1997). The advantage of these methods are the accuracy and relative simplicity of the measurements of hydraulic heads (e.g. Brassington, 2008). However, these methods rely on an accurate determination of hydraulic conductivity, which is highly variable within proglacial environments (e.g. Robinson et al., 2008; Langston et al., 2013). Additionally, the logistics and intrusive nature of hydrogeological monitoring networks can be problematic, particularly in protected and remote areas (e.g. Cooper et al., 2011).

2.4.6. Summary

There is an increasing understanding with regards to the integration between groundwater and surface water systems. Groundwater-surface water exchange substantially impacts the hydrology, ecology, and biogeochemistry of both systems and the hyporheic zone. Groundwater-surface water exchange is controlled by topography, geology, and climatic conditions. However, groundwater-surface water exchange is subjected to substantial temporal and spatial variability. This is particularly true for proglacial environments, which have high spatial heterogeneity in substrate characteristics, and high temporal variability in discharge and recharge characteristics. There is a wide array of methods to investigate groundwater-surface water exchange such as direct measurements, hydrogeological methods, and environmental and temperature tracing. However, despite the increase of research on groundwater-surface water exchange, there is still a significant paucity of research with regards to the temporal and spatial variability in proglacial groundwater-surface water exchange. The high heterogeneity in meltwater discharge and
hydrogeological parameters at the Skaftafellsjökull foreland and Skeiðarársandur therefore suggests that proglacial groundwater-surface water exchange will be highly variable.

2.5. The impact of groundwater on proglacial habitats

This section describes the impact of groundwater on the conditions of proglacial surface water habitats. This section also describes the projected impacts of climate change and glacier retreat on proglacial hydrology and ecology. Proglacial ecosystems are substantially impacted by climatic variability, diverse water sources, and the hydrological connectivity between these water sources, which lead to high variability in small-scale habitats (Ward et al., 1999; Füreder et al., 2001; Malard et al., 2001; Finn et al., 2013). The interactions between the different water sources create variable hydrological, physiochemical and geomorphic conditions, which significantly control the structure, distribution and function of stream ecosystems (e.g. Milner and Petts, 1994; Malard et al., 2006; Jacobsen et al., 2012; 2014).

2.5.1. The impact of water source on water physicochemical parameters in glaciated catchments

The hydrology of proglacial catchments is highly variable, with icemelt, snowmelt, rainfall and groundwater contributing most runoff. Streams within alpine catchments were traditionally divided according to their contributing water source: glacial (kryal), snowmelt (rhithral) or krenal (groundwater) streams (Milner and Petts, 1994). The distinction between stream types according to this classification was almost solely based on stream temperature. Later classification categorised streams were then based on the relative contributions of each water source (Brown et al., 2003).
Glaciated and recently deglaciated catchments are characterised by harsh ecological conditions, caused by the prevalent high sediment mobility, strong winds, and lack of fertile soils (Jumpponen et al., 1999; Marteinsdóttir et al., 2010; 2013). Krenal (icemelt-fed) and rhithral (snowmelt-fed) streams are characterised by high and variable discharge, high suspended sediment concentrations, and high concentrations of dissolved oxygen. The environmental conditions in these streams are harsh due to the cold temperatures, low nutrients, high turbidity, and high variability in discharge leading to low channel stability (e.g. Milner and Petts, 1994; Tockner et al., 1997; 2002; Gooseff et al., 2003; Slemmons et al., 2013; Brown et al., 2007a; Cauvy-Fraunié et al., 2013; 2014).

Conversely, groundwater-fed (krenal) streams in glacial environments generally have higher temperatures, nutrient concentrations and channel stability. These streams also have lower turbidity and variability in discharge (e.g. Milner and Petts, 1994; Malard et al., 1999; 2000; 2001; Ward et al., 1999; Roy et al., 2011; Brown et al., 2007a, b, Crossman et al., 2011; Jacobsen et al., 2012). The distance from the glacier margin is an important control on water physicochemical parameters within glaciated basins. Temperatures and nutrient concentrations generally increase with distance from the glacier margin due to increasing contributions from groundwater, rainfall, and snowmelt (e.g. Brown et al., 2006a). Algal biomass also increases with distance from the glacier margin (e.g. Uehlinger et al., 2010). Hence, the variability in water temperature, chemistry, and ecology increases with distance from the glacier margin (e.g. Fürreder et al., 2001; Milner et al., 2009; Cauvy-Fraunié et al. 2013; Slemmons et al., 2013).

Water temperature critically influences the growth, development, emergence, reproduction, and distribution of aquatic fauna (Ward and Stanford, 1982; Brown and Hannah, 2008; Kurylyk et al., 2014a, b). Crossing critical temperature thresholds can increase disease vectors, metabolic stress, and impede fish migration, which adversely affects organisms and ecosystems (Acuña and Tockner, 2009). The temperatures of
meltwater and groundwater-fed streams within proglacial environments are controlled by an array of factors including water source, proximity to the glacier margin, climate, basin and channel characteristics, riparian conditions, and hyporheic exchanges (Webb and Zhang, 1999; Brown et al., 2005; Brown and Hannah, 2008; Acuña and Tockner, 2009; Cauvy-Fraunié et al., 2013). Glacial coverage significantly reduces stream temperatures, with a 10% increase in catchment glaciation equating to a cooling of stream temperature by 1-2 °C in July/August and 0.6 °C in September (Moore, 2006). In contrast to surface water temperatures in proglacial environments, groundwater temperatures are mainly determined by the mean annual, rather than the prevailing, air temperature (e.g. Bonan, 2008). Therefore, groundwater temperatures are generally higher and less variable than those of meltwater (e.g. Füreder et al., 2001). For instance, studies from the Val Roseg have shown that hyporheic temperatures exceeded meltwater temperatures by 12.1°C in the summer and 2.7°C during winter (Malard et al., 2001; Acuña and Tockner, 2009).

Higher groundwater temperatures than meltwater temperatures have also been reported from glaciated catchments in the Alps (e.g. Lafont and Malard, 2001; Malard et al., 2001), the Pyrénées (e.g. Brown et al., 2006; 2007b), the Andes (e.g. Jacobsen et al., 2010; 2012), New Zealand (Datry et al., 2007), Iceland (Gíslason et al., 2000; Tristram et al., 2014), and Svalbard (e.g. Blaen et al., 2013). In addition to buffering the variability in stream temperatures, groundwater discharge can also provide thermal refugia, which increases the heterogeneity of river thermal regime and enables the survival of fauna in river reaches that would not be suitable otherwise (e.g. Sutton et al., 2007; Kurylyk et al., 2014). Groundwater contributions to streams therefore increase stream temperature and thermal stability, which also significantly impacts stream ecology. Higher biodiversity has generally been observed in streams with high groundwater contributions (e.g. Milner and Petts, 1994; Ward et al., 1999; Brown et al., 2007a, b; Crossman et al., 2011; 2013).

Water source in glaciated catchments also substantially impacts water chemistry, which impacts nutrient levels. Groundwater-fed streams and lakes generally have higher solute
concentrations than snow and glacial fed streams, due to longer residence time, hence interaction, of groundwater with the substrate (Füreder et al., 2001; Malard et al., 2001; Gooseff et al., 2003; 2006; Wimpenney et al., 2010; Fortner et al., 2011). However, groundwater chemistry can vary within and between catchments due to the different residence times and lithology with which groundwater interacts (e.g. Cooper et al., 2002; Dragon and Marciniak, 2010; Hindshaw et al., 2011; Gooseff et al., 2013). In addition to geology, water chemistry is also controlled by the distance from the glacier margin. Observations from the Val Roseg catchment showed that streams near the glacier margin contained only a limited amount of allochtonous organic matter, which was attributed to sparse vegetation. Nutrient and organic matter concentrations then increased with distance from the glacier terminus (e.g. Zah and Uehlinger, 2001; Milner et al., 2009; Slemmons et al., 2013).

Stream water source also substantially impacts biogeochemistry. Within the various stream sources in the Val Roseg catchment, groundwater was observed to have the highest concentrations of dissolved organic carbon (DOC) (Tockner et al., 2002). Observations of low flow conditions during winter from SE Alaska also report an increase in DOC concentrations during winter, due to an increase in the baseflow contribution of DOC-rich groundwater (Hood and Berner, 2009). Glacial meltwater are also reported to have substantially higher nitrate concentrations than those of snowmelt water (Robinson and Kawecka, 2005; Hood and Scott, 2008; Slemmons and Saros, 2012; Slemmons et al., 2013). In addition to the studies from streams in glacial environments, the impact of water source on aquatic biogeochemistry and ecology has also been reported in other proglacial water bodies. For instance, substantial differences in water physicochemical parameters have been observed in kettle holes at Skeiðarársandur, Iceland, where icemelt-fed kettle holes had lower EC and higher turbidity. Conversely, kettle holes which are hypothesized to be groundwater-fed had higher EC and low turbidity. Additionally, the kettle holes had distinct sulphide oxidation reactions, which were hypothesised to be bacterially-mediated.
These reactions and field observations of algal mats and invertebrates suggest that the groundwater-fed kettle holes serve as important ecological niches (Robinson et al., 2009a). The ecological impacts of shallow groundwater systems have also been reported from the McMurdo Dry Valleys in Antarctica, where solute transport through water tracks and the hyporheic zone of streams enhanced solute mobilisation and improved habitat conditions for microbial and invertebrate communities (Gooseff et al., 2013).

Water source within glaciated environments also substantially impacts water turbidity. Turbidity is high in glacial-fed streams due to the high suspended sediment concentrations, which reduces water clarity (Hallet et al., 1996; Malard et al., 2006; Hood and Berner, 2009; Moore et al., 2009). Conversely, groundwater-fed streams have lower concentrations of suspended sediment concentration, hence lower turbidity (e.g. Brown et al., 2007a; Milner et al., 2009). Turbidity can substantially impact aquatic ecology. For instance, observations from lakes that receive significant glacial melt inputs have shown that the high turbidity can attenuate 20-25% of photosynthetically active radiation and ultraviolet radiation (Hylander et al., 2011). This attenuation of radiation impacts the distribution and behaviour of fauna, with possible implication for aquatic food webs (Utne-Palm, 1999; Jönsson et al., 2011; Hylander et al., 2011). Therefore, the low turbidity of groundwater-fed streams is hypothesised to enhance aquatic biodiversity (e.g. Milner et al., 2009).

2.5.2. Projected impacts of climate change on proglacial hydrology and ecology

Climate change is projected to enhance glacial retreat and substantially alter the magnitude and timing of snow and icemelt. These changes are projected to alter the hydrology of glaciated basins, reducing streamflow meltwater contributions and increasing rainfall and groundwater contributions (e.g. Milner et al., 2009; Blaen et al., 2013; 2014). These changes are projected to impact water physicochemical parameters, such as...
temperature. For instance, a decrease of 10% in catchment glaciation was modelled to have a similar impact to an increase of 1.6 °C in stream Mean Weekly Annual Temperature (MWAT), which is an important indicator of thermal suitability for fish species (Nelitz et al., 2008).

These changes are also projected to substantially impact the ecology of glaciated basins (e.g. Milner et al., 2009; Slemmons et al., 2013; Blaen et al., 2013; 2014). The biodiversity of aquatic fauna is assessed using various biological indices which focus on the site (α), inter-streams (β) and regional (γ) scales (Brown et al., 2007b). Models project complex reactions of ecosystems to a reduction in meltwater input. The mollification of the harsh conditions associated with glacial streams due to increased proportions of groundwater is projected to increase α biodiversity (e.g. Milner et al., 2009). However, the reduction in snow, ice melt, and groundwater recharge can lead to a loss of habitat heterogeneity, which will reduce the β biodiversity. Alongside the reduction in meltwater input, the steepening of the temperature gradient, due to glacier retreat, is also projected to have detrimental effects on the biodiversity of these environments (e.g. Milner et al., 2009; Finn et al., 2010). The implications of shifting water sources within glaciated basins can be illustrated by the disappearance of highly endemic species which are adapted to the unique conditions found in glacial meltwater, such as high variability in discharge (e.g. Cauvy-Fraunié et al. 2013), low water temperatures and channel stability (e.g. Milner et al., 2001; Rossaro et al., 2006), and high turbidity (e.g. Hylander et al., 2011). These extinctions are also projected to reduce γ biodiversity (Brown et al., 2007b; Hannah et al., 2007; Milner et al., 2009). These projections are supported by observations and modelling from various proglacial settings. For instance, a comparison between the biodiversity indices of glaciated and deglaciated catchments in the Pyrénées has shown that the gamma indices of the former were significantly lower than the latter (Finn et al., 2014). Observations from the Apennines in Italy suggest the disappearance of chironomid species which are endemic to glacial snouts following the disappearance of the glaciers.
The impact of falling meltwater discharge due to glacial retreat has also been investigated in Antisana, in the Ecuadorian Andes. Models suggest that glacier retreat will lead to a significant reduction in habitats which are impacted by high hydraulic stress (caused by the high variability in meltwater discharge). The models therefore project a reduction in the abundance of macroinvertebrate species adapted to living in such habitats (Cauvy-Fraunié et al., 2014). These studies suggest that the projected changes in the contributions of icemelt, snowmelt and groundwater to proglacial streams following glacial retreat, will significantly impact proglacial biodiversity (e.g. Blaen et al., 2013; 2014).

2.5.3. Summary

The main water sources within proglacial environments are icemelt, snowmelt, and groundwater. The relative contribution of each source significantly impacts water physicochemical parameters, biogeochemistry, and ecology. Meltwater generally has very low temperatures and nutrient concentrations and high variability in discharge. Conversely, groundwater temperatures and nutrient concentrations are higher, while the variability in discharge is smaller. These favoured conditions in groundwater substantially impact proglacial ecology, with higher biodiversity generally reported from water bodies with higher groundwater contributions. Climate change and glacier retreat are projected to alter the amount of timing of melting, which will alter the contributions of icemelt, snowmelt and groundwater within proglacial streams. These changes are projected to have mixed impacts on proglacial biodiversity. On one hand, the mollification of the harsh conditions associated with meltwater is projected to increase site biodiversity. Conversely, inter-stream and regional biodiversity are projected to fall due to the reduction in abundance, and possible extinction, of highly endemic species following the decline in habitat heterogeneity.
2.6. Conclusions

This chapter has summarised current research on: 1) the unique hydrological characteristics of glaciated basins, 2) The dominant processes and controls on groundwater flow within glacial environments, 3) the importance and controls on groundwater-surface water exchange, 4) the impact of groundwater contributions to proglacial ecology. Additionally, the projected impacts of climate change on proglacial groundwater hydrology and groundwater-surface water exchange have also been summarised. This literature review highlights the paucity of research with regards to proglacial groundwater systems and groundwater-surface water exchange. The literature review also highlights the following research priorities:

- The need for long term monitoring of proglacial groundwater levels and the extent of groundwater-fed surface water features.
- Determination of the spatial variability of hydrogeological parameters within proglacial settings using field and laboratory methods in order to understand the patterns of proglacial groundwater flow at the site and to develop a hydrogeological framework for the individual site margins.
- Quantitative analysis of hydrological exchange between meltwater, lakes, and groundwater in order to improve the understanding with regards to proglacial groundwater-surface water exchange.

These highlighted issues will be addressed in this study using a combination of geographical, hydrogeological, and geochemical techniques. These results will improve the understanding of the spatial and temporal variability of groundwater-surface exchange at the proglacial zones of two retreating glaciers in SE Iceland.
Chapter 3

3. Field sites

3.1. Introduction

This chapter describes the field sites where research has taken place. Fieldwork for this project was undertaken during three campaigns: 10 July-15 August 2011, 15 June-01 August 2012, and 23-31 August 2012. Fieldwork took place at the proglacial zone of Skaftafellsjökull and the proglacial outwash plain (sandur) of western Skeiðarársandur, which are located in SE Iceland (Figure 3.1, Figure 3.2). These sites were chosen for the following reasons:

- The groundwater table at the sites is relatively shallow (approximately 1.5 m below ground). Hence a simple, shallow piezometer network is sufficient for the effective monitoring and sampling of proglacial groundwater and for the investigation of groundwater-surface water exchange.

- The proglacial outwash plain of Skeiðarársandur was chosen due to the extensive background data on aquifer properties, hydrogeology (e.g. Bahr, 1997; Fairchild et al., 1999a; Guðmundsson, 2002; Robinson et al., 2008; 2009a, b) and geomorphology (e.g. Marren 2002a; 2005; Russell et al., 2006; Robinson et al., 2008; Mountney and Russell, 2009). This data includes records of groundwater levels which spans from July 2000 to August 2012. The background data also includes aerial photographs of western Skeiðarársandur from the years 1986, 1997, and 2012, which were used to map changes in the extent of groundwater seeps. These data sets were used to investigate the impact of glacier retreat on proglacial groundwater levels and the extent of groundwater seeps over time (objective i).

- The proglacial flow regimes at the field sites are impacted by a wide array of processes which provide opportunities to investigate groundwater-surface water
exchange at various temporal and spatial scales, including episodic low frequency, high discharge events (floods and jökulhlaups) (objective iv).

- The importance of groundwater to the proglacial ecology. Relatively high abundance of flora and fauna has been observed around groundwater seeps and groundwater-fed streams and lakes, which suggests that these features provide important ecological niches in the otherwise barren proglacial environments. However, groundwater-fed hydrological systems are likely to be impacted by glacier retreat and changes in precipitation. Therefore, an enhanced understanding of proglacial groundwater-surface water exchange will help to increase the understanding with regards to the resilience of these systems to the projected adverse impacts of climate change.

- The proximity of the sites to Route no. 1 and the Skaftafell camp site eased accessibility and simplified the logistics of the project.

Section 3.2 briefly describes the hydrogeological and hydrological setting of Iceland. Sections 3.3 and 3.4 describe the field sites at western Skeiðarársandur and Skaftafellsjökull, respectively. Section 3.5 describes the design of the piezometers which were used for groundwater monitoring at the sites and monitoring procedures.

3.2. Icelandic hydrology and hydrogeology

Iceland is located along the North Atlantic mid-ocean ridge, which runs through the island in a SW to NE direction. The geology of Iceland is composed of volcanic rocks, of mainly basaltic composition (80-85%). The remaining 15-20% are composed of basaltic sediments and andesitic intrusions (Johannesson and Saemundsson, 1989; Óskarsdóttir et al., 2011). Due to crustal accretion, the age of rocks increases with distance from the volcanic rift zones, hence, Iceland’s oldest geology is located in the East and West Fjords [Figure 3.1] (Oskarsson et al., 1982).
Figure 3.1. The principal components of the geology of Iceland, including the main fault structures, volcanic zones, and field sites.

The abbreviations are as follows: RR-Reykjanes Ridge; RVB-Reykjanes Volcanic Belt; SISZ-South Iceland Seismic Zone; WVZ-West Volcanic Zone; MIB-Mid-Iceland Belt; EVZ-East Volcanic Zone; NVZ-North Volcanic Zone; TFZ-Tjörnes Fracture Zone; KR-Kolbeinsey Ridge; ÖVB, Öræfi Volcanic Belt; SVB, Snæfellsnes Volcanic Belt. Adapted from Thordarson and Larsen (2007).

Icelandic hydrology and hydrogeology are strongly influenced by the interaction between volcanism, glaciers, seasonal snow cover and groundwater (Sigurðsson, 1990; 1993; Björnsson and Pállsson, 2008; Óskarsdóttir et al., 2011). Geology forms an important control on Icelandic hydrology and hydrogeology, with surface runoff dominating the Tertiary and Quaternary formations. Conversely, the fissure swarms and lava fields found in the younger volcanic zones have high permeability and hydraulic conductivity, which enhances infiltration and the formation of springs and spring-fed streams. Therefore, surface runoff is less dominant in these regions (e.g. Hjartarson, 1994; Gíslason et al.,
Chapter 3

Field sites

1996; Sigurðsson and Einarsson, 1988; Sigurðsson 1990; 1993; Jónsdóttir, 2008
Einarsson and Jónsson, 2010a, b). Additionally, substantial aquifers can also be found within proglacial outwash plains (sandurs) whose thickness can reach several hundred metres (Bahr, 1997; Robinson et al., 2008).

Glaciers and seasonal snow cover, which store and delay runoff on various temporal scales, also exert important controls on Icelandic hydrology and hydrogeology (e.g. Björnsson and Pálsson, 2008; Crochet, 2013). Icelandic glaciers store the equivalent of 15-20 years of mean annual precipitation (Jóhannesson et al., 2006). Icelandic rivers are usually divided according to their source: precipitation (snow and rainfall), glacial rivers, and groundwater-fed rivers (e.g. Kjartansson, 1945; Óskarsdóttir et al., 2011). Although precipitation contributes the highest proportion to runoff, glacial and groundwater-fed rivers also contribute substantial amounts (e.g. Jónsdóttir, 2008; Robinson et al., 2009a, b; Einarsson and Jónsson, 2010a, b). Glacial runoff usually has higher Suspended Sediment Concentration (SSC) and lower Total Dissolved Solutes (TDS) than non-glacial rivers (Anderson et al., 2000; Wimpenny, 2010). However, the SSC in glacial-fed rivers is related to discharge, and highest during summer and early autumn. Spring-fed rivers in Iceland have low variability in temperature, discharge, and chemical content, and low SSC (Sigurðsson and Einarsson, 1988; Sigurðsson, 1990; Gíslason, 2008). The mean runoff for Iceland is approximately 1500-1600 mm/year (Tómasson 1981, 1982; Jónsdóttir, 2008). Simulations suggest an increase of 25% in runoff, due to climate change and enhanced glacial melt, between 2071 and 2100 (Jónsdóttir, 2008).

Glaciers cover around 11% of Iceland’s land surface, and receive about 20% of its precipitation (Jóhannesson et al., 2006; Björnsson and Pálsson, 2008). Icelandic glaciers are temperate, hence, they are dynamic and actively respond to changes in climatic conditions. Despite several exceptions, Icelandic glaciers have generally been retreating since the 1890s, with ice surface elevation within the ablation zone dropping by dozens of metres. Some glacier margins are retreating at nearly 100 m/year (Björnsson and
Chapter 3

Field sites

Pálsson, 2008; Bradwell et al., 2013; IGS 2013). The modelled changes in snowmelt and glacier mass balance project substantial changes in the magnitude and timing of glacial runoff. These changes impose significant challenges, particularly to the hydroelectric power industry (e.g. Thorsteinsson and Björnsson, 2011). Changes in runoff are also projected to impact river and coastal sedimentation, ocean salinity, and currents (Einarsson and Jónsdóttir, 2008). Glacier retreat is also projected to cause substantial shifts in drainage routes (Flowers et al., 2003; 2005) and to enhance the formation of ice contact lakes, with repercussions to proglacial hydrology (Schomacker, 2010; Marren and Toomath, 2013).

Iceland is located in a climatically important region within the North Atlantic, at the interface between the mid-latitude and polar atmospheric circulation cells and ocean currents. Its location between warm and cold ocean currents also increases its sensitivity to changes in oceanic circulation (Flowers et al., 2005; Björnsson and Pálsson, 2008). Most climate change projections for Iceland suggest that over the 21st century temperatures will increase at around 0.2-0.3°C/decade, with higher increases during winter. Precipitation is also projected to increase around 0.5-1.8 % per decade (Nawri and Björnsson, 2010).

Modelling the impact of climate change on the Icelandic ice caps project glacier retreat and changes in meltwater runoff. The loss of glacier volume is projected to increase runoff from the icecaps until around 2060, when runoff will begin to decrease (Guðmundsson et al., 2009). Jóhannesson et al. (2006) modelled projected changes in temperature and precipitation on the mass balance and runoff of Langjökull, Hofsjökull and southern Vatnajökull. Their results suggest that the glaciers with the largest mass balance turnover and longest ablation season had the highest static sensitivity (change in mass balance due to a rise of 1°C). Such changes, along with diurnal and seasonal alterations in meltwater generation (de Woul et al., 2006), are projected to significantly impact water resources in Iceland (Jóhannesson et al., 2006). Climate change models for Langjökull
and Hofsjökull also project substantial changes in the ice caps’ extent within 100-200 years (Guðmundsson et al., 2009). Hofsjökull is approximately 300 m higher, with its ice thickness exceeding that of Langjökull by approximately 100-200 m. These differences substantially impact the ice caps’ response to warming, as Langjökull is projected to disappear within approximately 145 years. Conversely, the highest peaks of Hofsjökull are projected to remain ice-covered after 200 years (Guðmundsson et al., 2009).

The field sites for this study are located in the proglacial zones of Skeiðarárjökull and Skaftafellsjökull, which are outlet glaciers of the Vatnajökull ice cap, the largest icecap in Europe. The impacts of climate change on the Vatnajökull ice cap have also initiated various studies due to its extent and geometry, which control groundwater and surface water discharge, jökulhlaup generation, and ice divides (e.g. Flowers et al., 2003; 2005; Aðalgeirsdóttir et al., 2006). The majority of Vatnajökull’s mass is stored in low elevations, which increases the sensitivity of its geometry to small changes in air temperature (Flowers et al., 2003). Vatnajökull’s volume has decreased by about 300 km3 (10%) since 1890, with major outlets retreating by 2 to 5 km (Björnsson and Pálsson, 2008; IGS, 2013). Climate warming is projected to significantly impact the hydrology of Vatnajökull and its surroundings. Following retreat, the southern outlets are projected to experience a substantial reduction in runoff (Flowers et al., 2005). Models also project that changes in glacial extent will dramatically reduce discharge and shift drainage patterns. An extensive retreat of Skeiðarárjökull is also projected to disturb the frequency and routing of jökulhlaups (Flowers et al., 2005). Glacier retreat is also projected to increase the influence of topography on river routing, diverting waters between basins. The reorganisation of drainage following glacier retreat can therefore isolate catchments in southern Vatnajökull from glacial runoff (Flowers et al., 2005).
3.3. Western Skeiðarársandur

Skeiðarársandur forms the proglacial outwash plain of Skeiðarárjökull (latitude 63°57’ N, longitude 17°21’ W), a retreating temperate piedmont glacier in SE Iceland that is a southern outlet glacier of the Vatnajökull ice cap (Figure 3.2). Skeiðarársandur is reputed to be the world’s largest active sandur (~1,000 km²) (Marren, 2002a). It extends across the ~23 km wide glacier margin of Skeiðarárjökull and ~20 km from the glacier margin to the Atlantic coast (Figure 3.3). Several active volcanic centres, including Grímsvötn, which last erupted in May 2011, are located beneath Vatnajökull (Figure 3.2) and are the source of periodic glacial outburst floods (jökulhlaups) which impact Skeiðarársandur. Skeiðarársandur is drained by three major meltwater rivers: The Skeiðará, Gígjukvísl and
Súla, located in the eastern, central and, western parts of Skeiðarársandur, respectively (Guðmundsson et al., 2002) (Figure 3.3). Substantial changes in sandur drainage occurred in 2009 when ongoing glacier retreat led to a rerouting of the majority of meltwater from the Skeiðará into the Gígjukvisl river system. Skeiðarársandur is also impacted by jökulhlaups in the Súla river system from Lake Grænálon, which is located to the north west of the sandur (Figure 3.2).

Figure 3.3. The field sites at Skeiðarársandur and the Skaftafellsjökull foreland.
A. Site location in Iceland showing the field sites at western Skeiðarársandur (1) and the Skaftafellsjökull foreland (2). B. General field site map (the map is from Skaftafell Sérkort 5 hiking map, 2009)
Figure 3.4. A view of the field site in western Skeiðarársandur.

A. Location map of Skeiðarárjökull in Iceland. B. The Skeiðarársandur outwash plain and the study area (denoted in solid white line) in western Skeiðarársandur (from Google Earth, 2013). OD1 and OD2 show the locations of overdeepenings in eastern/central and western Skeiðarárjökull, respectively. These locations are based on Björnsson et al. (1999). C. The field site in western Skeiðarársandur (the Icelandic Geodetic Service, Landmælindar Islands [LMÍ], 1997). The study area is denoted by the dashed white line. Shallow piezometers are denoted in white with the different shapes denoting the different hydrogeological environments in which the piezometers were installed (see legend). The solid white line denotes the main area of groundwater seeps in 1997.

The Skeiðarárjökull geomorphic landsystem has been classified using the landsystem model of Evans and Twigg (2002) as a temperate, actively-receding glacier margin that also experiences periodic surge events. The main depositional domains are marginal moraines, incised and terraced glaciofluvial forms, and subglacial landforms (Robinson et al., 2008). The geomorphology and hydrology of Skeiðarársandur are impacted by the interaction between high frequency, low magnitude processes (i.e. seasonal and annual accumulation and ablation) and low frequency, high magnitude events (i.e. glacial surges
and jökulhlaups) (Marren, 2005). The mean annual precipitation between 1978-2012 was 1712±218 mm (Figure 3.5, Table 3.1). The mean air temperature was 4.81± 0.64 °C (Icelandic Meteorological Office [IMO, 2013]). The mean annual and seasonal air temperature and precipitation in western Skeiðarársandur and Skaftafell are shown in Table 3.1.

![Figure 3.5. Total annual precipitation and mean annual air temperature for western Skeiðarársandur (1978-2012). The data was obtained from the Kirkjubæjarklaustur meteorological station (IMO, 2013).](image-url)
Table 3.1. Annual and seasonal mean air temperature and total precipitation at the Skeiðarársandur and Skaftafellsjökull field sites.

The data was obtained from the IMO meteorological stations in Kirkjubæjarklaustur (A) and Skaftafell (B) (IMO, 2013).

<table>
<thead>
<tr>
<th>Mean Variable</th>
<th>Temperature (°C)</th>
<th>Precipitation (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Western Skeiðarársandur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter (December-February)</td>
<td>0.08 ± 0.88</td>
<td>491 ± 125</td>
</tr>
<tr>
<td>Spring (March-May)</td>
<td>3.62 ± 1.06</td>
<td>360 ± 91</td>
</tr>
<tr>
<td>Summer (June-August)</td>
<td>10.78 ± 0.58</td>
<td>388 ± 91</td>
</tr>
<tr>
<td>Autumn (September-November)</td>
<td>4.82 ± 0.87</td>
<td>484 ± 146</td>
</tr>
<tr>
<td>B. Skaftafellsjökull foreland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual</td>
<td>5.15 ± 0.38</td>
<td>1595 ± 302</td>
</tr>
<tr>
<td>Winter (December-February)</td>
<td>2.38 ± 0.11</td>
<td>497 ± 184</td>
</tr>
<tr>
<td>Spring (March-May)</td>
<td>4.36 ± 2.65</td>
<td>329 ± 132</td>
</tr>
<tr>
<td>Summer (June-August)</td>
<td>10.23 ± 0.58</td>
<td>313 ± 116</td>
</tr>
<tr>
<td>Autumn (September-November)</td>
<td>5.05 ± 3.07</td>
<td>470 ± 142</td>
</tr>
</tbody>
</table>

The margin of western Skeiðarárjökull has been retreating since the end of the 19th Century, the Little Ice Age (LIA) maxima in Iceland (Björnsson and Pálsson, 2008). Western Skeiðarárjökull has retreated a net distance of approximately 3.5 km beyond its position since monitoring began in 1932 (The Icelandic Glaciological Society [IGS], 2013). However, this distance excludes advances in the years 1946, 1965-6, 1973-5, and 1985-6 and the 1991 surge event (Figure 3.6). From 1978 to 2012, the glacier margin retreated ~2 km, at a mean rate of 30 m/year. However, this distance was offset by advances during the mid 1980s and the 1991 surge. Consequently, the net retreat of the glacial margin between 1978 and 2012 was approximately 1 km. Following the 1991 surge, western Skeiðarárjökull has retreated continuously. The distance of retreat between 1997 and
2012 was approximately 1.5 km. The mean annual rate of retreat during this period has increased by a threefold (from 31 m/a to 95 m/a). The rates of retreat which were measured in western Skeiðarárjökull are 2-4 times higher than those reported from smaller retreating outlet glaciers of southern Vatnajökull (Bradwell et al., 2013; IGS, 2013; Marren and Toomath, 2013).

Figure 3.6. Fluctuations in the position of the glacier margin of western Skeiðarárjökull (1932-2012).

A. The cumulative retreat distance of western Skeiðarárjökull from 1932 to 2012 (IGS, 2013). The arrows show the years of the aerial images (Chapter 4). 2B. Annual changes in the position of the glacial margin of Western Skeiðarárjökull (1932-2012). The full length of the mapping of groundwater seeps (1986-2012) and the period of groundwater monitoring are marked. The data was obtained from the database of the IGS, 2013. The figure was taken from Levy et al. (2015).

Western Skeiðarárssandur is also substantially impacted by glacial surges, which lead to significant advances of the glacier margin. These events are coupled with a shift of the
Chapter 3

Field sites

Subglacial drainage from an efficient, channelized drainage system, into an inefficient, linked-cavity system (Kamb et al., 1985; Björnsson, 1998). Such changes to the subglacial drainage system are likely to impact the spatial distribution and amount of water transmission into the glacier bed, which will impact subglacial groundwater recharge (Boulton et al., 2001a, b; Boulton and Zatsepin, 2006).

Skeiðarárjökull has experienced glacial surges in 1929 and 1991. During the 1991 surge, the western glacier margin advanced up to one km between September-November 1991, advancing at ~9.4 m/day. The surge increased the glacier surface area by ~10 km² (Pálsson et al., 1992; Waller et al., 2008). The extent of surging during the 1991 event varied across the Skeiðarárjökull margin, with a significant advance in the west (~1 km) and only minor advance in the east (Waller et al., 2008). This study focuses on the ice-marginal zone of the more dynamic western area of the glacier (Figure 3.4B). The geomorphic impacts of surges in western Skeiðarársandur include the formation of push moraines, deposition of outwash fans adjacent to the glacier, and changes in the routing of meltwater drainage (Russell et al., 2001; Van Dijk and Sigurðsson, 2002; Waller et al., 2008). Surges also impact proglacial hydrology and hydrogeology by steepening the ice surface slope and the hydraulic gradient (Wiśniewski et al., 1997; Russell et al., 2001; Robinson et al., 2008). The steeper hydraulic gradient is expected to increase groundwater flow (Haldorsen and Heim, 1999).

The geomorphology and hydrology of Skeiðarársandur are also substantially impacted by the interaction between Vatnajökull and its subglacial volcanoes, which include Grímsvötn and Gjalp. The subglacial Grímsvötn volcano is located about 40 kilometres to the north of Skeiðarársandur (Figure 3.2). It is Iceland’s most active volcano in historic times, with an eruption frequency of 7 eruptions/100 years (Óladóttir et al., 2011). Recent eruptions of Grímsvötn took place in 1996, 1998, 2004 and May 2011 (Jude-Eton et al., 2012). The activity of the Vatnajökull's subglacial volcanoes substantially impacts Skeiðarársandur.
through the generation of subglacial jökulhlaups (e.g. Russell et al., 2006) and, to a lesser extent, ash fall.

The main impact of glacier-volcanic interaction is the generation of jökulhlaups, which originate from glacio-volcanic interactions with the subglacial volcanic centres beneath Vatnajökull. In addition to the small jökulhlaups which occur regularly, substantial jökulhlaups with peak discharges between 25,000-53,000 m³/sec took place in 1934, 1938, and November 1996 (Guðmundsson et al., 1995; Magilligan et al., 2002). Major jökulhlaup events are associated with substantial hydrogeological and geomorphic impacts. These include rearrangement of the subglacial and proglacial drainage, the likely pressurisation of the groundwater system, and extensive sediment erosion and deposition. The latter processes can change the depth to the water table, which also alters the response of groundwater to precipitation. Jökulhlaup deposition and erosion also alters the distribution and extent of aquifer properties, which will also impact groundwater flow. The highest and most variable values of hydraulic conductivity in Skeiðarársandur were measured in the shallow subsurface zones that were inundated by the November 1996 jökulhlaup (Robinson et al., 2008). This event also resulted in an extensive formation of kettle holes, which originate from the melting of grounded ice blocks that were carried during jökulhlaups (Fay, 2002). Groundwater-filled kettle holes can provide important, yet transient, ecological niches (Robinson et al., 2009a).

The hydrogeology of Skeiðarársandur is significantly impacted by the wide variability of geomorphic processes (glacial, glaciofluvial, volcanic, and aeolian) which occur on Skeiðarársandur and leads to significant heterogeneity in hydrogeological parameters (Robinson et al., 2008). The sandur stratigraphy forms an extensive unconfined aquifer where thickness varies from 80-100 m near the glacier margin to ~250 m near the coast (Guðmundsson et al., 2002). The main sources of groundwater recharge are local precipitation and glacial melt, which originates from several different sources including basal melt; subglacially-routed, supraglacial, and englacial melt; and the melting of buried
Chapter 3

Field sites

Stagnant ice. Stable isotopes (δ^D and $\delta^{18}O$) have shown that the influence of glacial melt on groundwater decreases rapidly with distance from the margin (Robinson et al., 2009b). However, this pattern can be complicated due to hydrological exchange between groundwater and meltwater rivers. Skeiðarársandur is also locally underlain by buried ice (Everest and Bradwell, 2003), which can strongly impact groundwater recharge, dynamics and routing (Robinson et al., 2008).

The regional groundwater system generally flows from north to south. However, local, perched groundwater systems, which are imposed on the regional groundwater flow system (Tóth, 1963), have also been identified. These perched groundwater systems were mainly found within moraine areas (Robinson et al., 2008). The groundwater table across most of the sandur is shallow, typically 2-3 m below ground level. The proximal sandur is generally dominated by groundwater recharge, while the distal sandur is dominated by groundwater discharge, with water table depths reducing to a few centimetres near the coast (Bahr, 1997; Robinson et al., 2008). The spring lines are generally parallel to the Skeiðarárjökull margin, which suggests that the position of the glacier margin, rather than the lateral rivers, controls their distribution. The calculated regional groundwater discharge is ~2.5 m3/sec, with mean regional groundwater velocity of 0.15 m/day (Robinson et al., 2008). High sediment mobility, strong winds, and the lack of fertile soils create harsh ecological conditions in Skeiðarársandur (Marteinsdóttir et al., 2013). Field observations report relatively high abundance of flora and fauna near groundwater-fed seeps, which possibly form important ecological microsites where growth conditions are more favourable (Figure 3.7).
Figure 3.7. The impact of groundwater seeps on proglacial ecology.

Relative abundance of vegetation around a groundwater seep in western Skeiðarársandur. The relative abundance suggests that these sites serve as important ecological niches. In addition to volcanic and glaciofluvial processes, aeolian activity (in the background) is also prevalent in this harsh proglacial landscape.

The field site in western Skeiðarársandur is located between the Súla and Gígjukvisl river systems (Figure 3.8) and is characterised by a range of contrasting landsystems. The western boundary of the study site is defined by an active braid plain of the River Súla. This river system drains subglacially from Lake Grænalón, an ice-dammed lake located alongside Skeiðarárjökull’s extreme western margin, approximately 20 km north of the field site (Figure 3.2). As well as discharging glacial meltwater, this river system also includes non-glacial contributions from the surrounding valley sides. The northern limit of the study area is characterised by a distinct moraine ridge bordered by stagnant ice and hummocky moraine on its ice proximal side and fine-grained outwash fans on its distal side. This landform assemblage marks the limit of the 1991 surge event (Russell et al.,
The southern limit of the area is associated with a broader zone of higher-relief moraines that comprises part of a larger moraine system that is a distinctive feature of this part of Skeiðarársandur. This high-relief moraine complex has similarly been related to an earlier surge event (Russell et al., 2001). Whilst parts of this complex feature clear moraine ridges, other parts, including the area located immediately south of a lake basin referred to as Twin Peaks Lake (TPL), are characterised by relict meltwater channels and pitted outwash surfaces indicating the influence of former jökulhlaups. The proximal boundary of the high-relief moraines is characterised by a prominent ice-contact slope. Finally, the eastern border of the field site is marked by the meltwater channel of the Gígjukvísl tributary.

The Twin Peaks Lake area is a prominent feature of the western part of the study area, located at the foot of the ice-contact slope and is characterised by a series of enclosed depressions that feature prominent cracks with sharp edges that are suggestive of the presence and gradual melt-out of buried ice. The presence of ice on the proximal side of the high-relief moraines is consistent with the observation of buried ice in a large moraine section exposed on the western bank of the River Gígjukvísl (Everest and Bradwell, 2003). To the north of this area, the topography is characterised by a large area of low-relief moraines. The occurrence of small moraine ridges and possible crevasse-fill ridges suggest that this is a former subglacial surface (Waller et al., 2008).

The eastern part of the study area is characterised by a braid plain formed by a combination of supraglacial and subglacial drainage that resulted from advance during the 1991 surge. This braid plain was also active during the subsequent November 1996 outburst flood (e.g. Russell et al., 2006). Progressive glacier recession and down wasting following the 1991 surge has resulted in a decrease in the extent of fluvial activity in this area. The distal part of this braid plain forms one of the lowest parts of the study area and is the main area of active seeps. An extensive monitoring network was emplaced in this area in 2000 and 2001 (Robinson et al., 2008). However, following glacier retreat,
groundwater levels have continued to fall below the intake of most piezometers. The monitoring infrastructure was therefore augmented in July 2011.

Figure 3.8. The field site in western Skeiðarársandur (the Icelandic Geodetic Service, Landmælinger Íslands [LMÍ], 1997).

The study area is denoted by the dashed white line. Shallow piezometers are denoted in white with the different shapes denoting the different hydrogeological environments in which the piezometers were installed (see legend). The solid white line denotes the main area of groundwater seeps. Piezometers which were installed in 2011 are outlined in red.

3.4. The Skaftafellsjökull foreland field site

Skaftafellsjökull (64°00′42.84″N, 16°54′20.77″W) is a temperate valley glacier, located in SE Iceland. The glacier sources most of its ice from the Vatnajökull ice cap, with a minor component in the east that originates from Óræfajökull (Figure 3.2) (Tweed et al., 2005; Cook et al., 2010). The glacier margin is approximately 120 m above sea level, and is part of the extensive low lying coastal plain sandur, which stretches from Skeiðarárjökull to
Öræfajökull. The Skaftafellsjökull glacier margin is approximately three km wide, and is drained by the meltwater river Skaftafellsá (Figure 3.9) (Marren, 2002b).

Figure 3.9. Study area of the Skaftafellsjökull foreland (Vatnajökull National Park, 2007).

The main changes between the photo and the study (2012) are the expansion of the ice contact lake at the Skaftafellsjökull foreland, the shrinking of Dead Bird Lake, and the diversion and drying out of the western branch of the Skaftafellsá. The black rectangle shows the approximate location for Figure 3.11.

Figure 3.10 shows the fluctuations in the position of the Skaftafellsjökull glacier margin, which has been monitored at the present site since 1942 (Thorarinsson 1943, 1956; Thompson 1988; Sigurðsson, 1998). The glacier reached its LIA maximum extent between 1870 and 1904. Up until 1935, Skaftafellsjökull and the adjacent glacier Svinafellsjökull (Figure 3.3) were joined, forming a single piedmont lobe (Thorarinsson, 1943). Skaftafellsjökull retreated steadily between 1904 and 1970. However, some advances took place in 1951-2, 1957 and 1968. The mean rate of retreat between 1942 and 1970 was 72 m/a. The glacier generally advanced between 1971 and 1988, with a total advance of 96 m. This placed the margin in similar position to its location during the mid 1960s. Following these advances, the glacier retreated 136 m between 1989 and 1995. This retreat was followed by an advance between 1996 and 1998 (Figure 3.10A).
The glacier has been retreating continuously since 1999, during which it has retreated approximately 600 m (Figure 3.10B) (Marren and Toomath, 2013; IGS, 2013).

![Figure 3.10. Fluctuations in the position of the Skaftafellsjökull foreland. A. Annual glacier margin fluctuations for Skaftafellsjökull (1943-2012). B. Cumulative glacier margin fluctuations (1943-2012). Data was kindly donated by the Icelandic Glaciological Society.](image)

The retreat of the glacier margin from the LIA maximum left a series of parallel moraine ridges, which are separated by a relict sandur (Thompson, 1988; Marren and Toomath, 2012). The moraines confine the two branches of the meltwater channel within the
proximal proglacial zone. The channels then merge behind a large moraine ridge, which dates back to 1939 (Figure 3.9). Past the moraine belt, the Skaftafellsá forms an unconfined sandur plain, which stretches to the coast (Thompson, 1988, Marren, 2002; Marren and Toomath, 2012). Similar to other outlet glaciers of Vatnajökull, an overdeepened basin has also been detected beneath Skaftafellsjökull (Tweed et al., 2005). The overdeepening significantly impacts sediment entrainment, the formation of ice by glaciohydraulic supercooling, and the expansion of the ice-contact lake (Tweed, 2005; Cook et al., 2010; Cook and Swift, 2012).

Glacier retreat has substantially impacted the proglacial hydrology and geomorphology of the Skaftafellsjökull foreland (Marren and Toomath, 2013; 2014). The recent retreat of Skaftafellsjökull into the overdeepening has substantially increased the size of the ice-contact lake (Figure 3.11) (Schomacker, 2010; Marren and Toomath, 2013). This expansion intercepted the eastern meltwater outlet and made it topographically lower. This lowering diverted meltwater from the western outlet, which was abandoned in late 2010. The area between the two outlets contains several moraine lake basins (The Northern Oasis, Figure 3.9), which are underlain by fine-grained sediment. Field observations have shown substantial decreases in the extent of these lakes between July 2011 and August 2012 (Figure 3.11).
Figure 3.11. Aerial view of the Skaftafellsjökull glacier margin (August, 2012).

Note the expansion of the ice-contact lake and the desiccation of Dead Bird Lake. The relict meltwater channels of the Skaftafellsá can be seen in the foreground (Photo courtesy of Z. Robinson).

Annual and seasonal meteorological data for the site has been obtained from the IMO [Veðurstofa Íslands] (2013) station near the Skaftafell Visitor Centre, where available meteorological records date back to 1995 (Figure 3.12). The mean annual precipitation (1995-2012) was 1595 mm/year. The mean annual temperature was 5.15°C (IMO, 2013).

The highest precipitation falls in winter and autumn. However, the seasonal distribution of precipitation is fairly even.

Table 3.1B) [IMO, 2013].
Figure 3.12. Total annual precipitation and mean annual temperature at the IMO Skaftafell meteorological station (IMO, 2013).

The geomorphology of the Skaftafellsjökull foreland reflects the combined influence of proglacial, subglacial, glaciofluvial and glaciolacustrine processes (e.g. Marren 2002b).

The influence of subglacial and proglacial processes are predominant in the areas of higher topography and are responsible for the development of undulating surfaces and a prominent series of recessional moraines. Whilst they are only 1-2 m in elevation, the recessional moraines are laterally extensive and describe a saw-tooth pattern that illustrates both the ongoing recession of the glacier margin and its crevassed and lobate nature. These areas associated with subglacial and proglacial deposition are generally underlain by fine-grained tills that can reach a few metres in thickness. Glaciofluvial processes are represented by the formation of a series of braid plains composed of outwash sands and gravels. The braid plain adjacent to the Eastern branch of the Skaftafellsá (Figure 3.9) is the only one that is currently active and there are a series of higher elevation braid plains that have become inactive as a result of ongoing glacier
recession. These inactive braid plains often occur as distinct corridors of outwash (e.g. to the east of the “Instrumented Lake”), which illustrate the influence of proglacial topography on the routing of proglacial drainage. The active and inactive braid plains are also often separated by prominent terraces that reflect progressive incision and a lowering in the elevation of the key drainage routes over time. Finally, the proglacial area also features a series of lakes and lake basins. These are particularly prominent along the current ice margin as a result of the recession of the ice margin into a subglacial overdeepening (Marren and Toomath, 2013). In more distal areas, the foreland features lakes that are impacted by glacial meltwater, characterised by high suspended sediment loads, which appear light grey in the imagery. Conversely, lakes which appear darker (Figure 3.9) are fed primarily by groundwater and precipitation, hence the lower suspended sediment loads (e.g. Crossman et al., 2012).

The main monitoring area at the Skaftafellsjökull foreland is located between the eastern meltwater channel of the Skaftafellsá and the Svinafellsjökull track (Figure 3.9). This area, termed “the Southern Oasis”, sits mainly within a relict braid plain extending from east to west that was originally fed by meltwater from the adjacent glacier Svinafellsjökull (Figure 3.3). The Southern Oasis contains several freshwater lakes and a groundwater-fed stream, which are significant to the local ecology, supporting birds, fish, and a wide range of invertebrates. A small moraine ridge, which runs from north to south, bounds the area from the west (Figure 3.13).
Figure 3.13. An oblique view of the Skaftafellsjökull foreland, July 2012.

A. The main features within the Skaftafellsjökull foreland study area (looking west). The Southern Oasis is denoted by the red box. The black box shows the approximate boundaries of the Northern Oasis.

B. The main hydrological and geomorphic features of the Southern Oasis lakes field site. The transect (piezometers T1-T3) is located between the Skaftafellsá and Swan Lake, where pressure transducers monitored groundwater levels in order to investigate river-aquifer-lake exchange.

The meteorological conditions at the Skaftafellsjökull foreland were obtained from the IMO meteorological station, which is located approximately 5 km northwest of the fieldsite. The mean monthly precipitation and temperature are based on the measurements of the aforementioned station between 1995 and 2013 (Table 3.1, Figure 3.12). The mean hourly air temperature and total daily precipitation during the 2012 field season are presented in Figure 3.14. Rainfall was the only form of precipitation during the field season. The total amount of rainfall during the field season was 142 mm. The highest daily rainfall was 33.3 mm, which was recorded on the 23/07/2012. Apart from this event,
only three days within the season had rainfall in excess of 10 mm, (11/08, 21/08, and 24/08) (IMO, 2013). The mean air temperature during the field season was 11.17±3.75 °C. The maximum temperature was 22.40 °C, which was measured at 1300 hours on 08/07/2012. The minimum temperature was 0.90 °C, measured at 0700 hours on 30/08/2012 (IMO, 2013).

![Figure 3.14. Meteorological conditions at the Skaftafellsjökull foreland during the 2012 field season (IMO, 2013).](image)

The figure shows total daily rainfall and the minimum and maximum hourly air temperature at the Skæftafell IMO meteorological station.

The comparison between the total monthly precipitation during the years of the study (2011-2013) and the mean monthly precipitation at the IMO Skæftafell meteorological station (Figure 3.15) shows that the precipitation regime at the Skæftafellsjökull foreland is highly variable. During the autumn and winter of 2011-2012 (October 2011-March 2012), the total monthly precipitation in each month (except December 2011) exceeded the long term mean total monthly precipitation by approximately 120 mm. In contrast, the total
monthly precipitation between April-December 2012 was ~50-150 mm lower than the long term monthly mean (Figure 3.15). It is hypothesised that the low precipitation between April-June 2012 had a substantial impact on the decline in lake levels at the field site.

The precipitation regime in 2013 was very different to that of 2012. Precipitation substantially exceeded the long term monthly mean in January and February 2013, with unusually high precipitation levels measured in February 2013, when the total monthly mean was exceeded by 350 mm. The high precipitation in February included unusually large precipitation events of 70.2 (09-10/02/2013) and 307.5 mm (25-26/02/2013) [IMO, 2013], which led to substantial runoff and flooding (Ogmundsson 2013, personal communication). In contrast to these high rainfall events, precipitation in March-June 2013 was either substantially below (March, April) or only slightly above (May, June) the mean monthly precipitation (Figure 3.15).
Chapter 3

Field sites

Figure 3.15. Comparison between total monthly precipitation in January 2011 to June 2013 and the mean monthly precipitation.

A. Mean monthly precipitation at Skaftafell (black bars) and the recorded monthly precipitation between January 2011 to June 2013 (white bars). B. Deviation of monthly precipitation between January 2011 and June 2013 from the mean monthly precipitation. The figure is based on data from the IMO (2013).

The comparison between mean monthly air temperature during the years of the study (2011-2013) and the mean monthly air temperature at the IMO Skaftafell metrological station (Figure 3.16) shows that the air temperature at the Skaftafellsjökull foreland is highly variable. Alongside the high precipitation rates during the winter of 2012,
temperatures were also ~2°C warmer than average during February and March 2012. In contrast, spring temperatures (April-June) in 2012 were slightly lower than the long-term monthly mean. The temperatures in July and August 2012 were ~ 1°C above the monthly mean. Similar to the winter of 2012, temperatures in January and February 2013 were also warmer than average, exceeding the mean monthly temperatures by ~2.5 and ~3°C respectively. In contrast to that, temperatures in March-May 2013 were between 0.5 and 2°C lower than average. Temperatures in June exceeded the monthly mean by ~ 0.3°C. Hence, the winter of 2013 was warmer and spring colder, than the mean temperatures (Figure 3.16).
Figure 3.16. Comparison between measured monthly air temperature during the study and mean monthly air temperature.

A. Mean monthly air temperature at Skátafell (black bars) and the measured mean monthly mean air temperature between January 2011 to June 2013 (white bars). B. Deviation of monthly air temperature between January 2011 and June 2013 from the mean monthly precipitation. The figure is based on data from the IMO (2013).
3.5. Monitoring of proglacial groundwater systems

3.5.1. Piezometer design and installation

Groundwater levels were monitored in this study in order to investigate the impact of fluctuations in the position of the glacier margin on proglacial groundwater levels (objective i) and for the investigation of proglacial river-aquifer and lake-aquifer exchange (objectives iv and v). The monitoring of proglacial groundwater in western Skeiðarársandur and the Skaftafellsjökull foreland were done using drive-point piezometers, whose design and installation were modified from Krause et al. (2011b). Two types of piezometers were installed (using their notation):

GW - 40 mm (28 mm inner) diameter plastic pipes. The full length of the piezometer was 2.00 m. The screen length is 0.60 m long, with the holes (0.08 cm diameter) drilled 0.10 m apart. The screened section was then covered in fine cloth mesh, in order to prevent sediment from entering the piezometer. In order to assist the driving of the piezometers into the ground and to prevent sediment entrance from the bottom, each piezometer was equipped with a sharp metal end, which was driven into the ground using a sledge hammer (Figure 3.17). These piezometers were used for sampling and automated measurements of groundwater levels (using pressure transducers) and for performing slug tests to measure hydraulic conductivity. Additionally, a stilling well, which was constructed in a similar manner to the GW piezometers (although the screen section was not covered with mesh) was installed in the Skaftafellsá to monitor river levels. Lake levels at the Instrumented Lake (IL) were measured manually every day using a stage board.

Lx (if located around the Instrumented Lake at the Skaftafellsjökull foreland). The full length of the piezometer is 2.00 m. The inner diameter is 12 mm. The screen length is approximately 0.40 m long, and consisted of 5-7 holes (0.08 cm diameter), which were 0.07 m apart. These piezometers were used for sampling and manual measurements of
groundwater levels. The bottom of these piezometers was sealed with a wall plug and a washer, which was also used to drive the piezometer into the ground. In some instances a pit, into which the piezometers were inserted, was dug prior to the driving of the piezometer into the ground. The 12 mm piezometers were initially emplaced within a wider tube, which was then driven into the ground. When reaching the desired depth, the outer tube was pulled out, leaving the piezometer in the ground.

Figure 3.17. Shallow piezometers for the monitoring of proglacial groundwater.

A sketch of the 40 mm (GW) piezometers is shown on the right. The image on the left shows T2 piezometer, located between the Skaftafellsá meltwater channel and the Instrumented Lake.

The underlying substrate exerted an important control on the location of the piezometers, with difficulties in installing piezometers in substrates with high proportion of clay or boulders. For instance, it was intended to install piezometers near the Skaftafellsjökull margin. However, this plan was abandoned due to difficulties in inserting piezometers into the coarse substrate of the glaciofluvial channels in the relict sandur near the Skaftafellsjökull margin (Figure 3.9). The author is aware of the bias in the understanding
of site hydrogeology which was introduced due to the instalment of piezometers mainly in coarse-grained areas. However, despite these limitations, the drive point method still provided a simple, cost-effective, and efficient monitoring network. Once emplaced, the piezometers were left for several days in order to equilibrate with the aquifer (Brassington, 2007).

The instrumentation emplaced in the Skaftafellsjökull foreland in June 2012 covered a relatively small area (Figure 3.18). The infrastructure design was intended to investigate groundwater exchange with the meltwater river (objective iv) and the lakes (objective v). Groundwater-meltwater river exchange was investigated at the GW5, GW9; and T1-T3 piezometers. Groundwater exchange with lakes was investigated at the Instrumented Lake (IL) using piezometers L1-L8, which were emplaced around the lake perimeter. In addition to the piezometers around the IL, two piezometer nests were installed in the eastern (fine-grained) and western (coarse-grained) ends of the IL. These nests consisted of piezometers which were less than 1 metre apart, but were installed at different depths: 1.50, 1.00 and 0.50 m below the lake bed. The nests were used to measure the direction of vertical groundwater flow around the IL. In addition to the instrumentation around the IL, several piezometers (GW10-12) were also emplaced in the coarse outwash deposits, north of the IL (Figure 3.18) in order to provide an understanding of the regional groundwater flow direction at the Skaftafellsjökull foreland (Chapter 7). The configuration of groundwater flow and river-aquifer exchange at the Skaftafellsjökull foreland is described in Chapter 7. The investigation of aquifer-lake exchange is described in Chapter 8.
Figure 3.18. Instrumentation at the Skaftafellsjökull field site.

A. The main hydrological features of the Southern Oasis. B. The piezometers installed at the Southern Oasis. Note that the Skaftafellsá channel has migrated east since the date of the image (2007). The position of the river (meltwater) channel during the monitoring in June-August 2012 is marked by the dashed blue line. The figure also shows the location of the stilling well (MW) in the meltwater channel.

The majority of the monitoring infrastructure in the Skaftafellsjökull foreland was concentrated at the Instrumented Lake (the IL) (64°00’42.84”N, 16°54’20.77”W) (Figure 3.19). This lake is surrounded to the north, south and east by small moraines (~3 m high). The lake length is ~30 m and width is ~50 m. The circumference is ~150-160 m. Lakebed sedimentology varies substantially between the eastern and western lake shores. The eastern section of the lake is underlain by ~0.5 m of fine-grained deposits and boulders, with coarser substrate below that depth. Conversely, the western section is underlain by sands and gravels, which suggests glaciofluvial origin.
The investigation of aquifer-lake exchange at the IL (objective v) was executed using hydrogeological and temperature measurements. The hydrogeological measurements were obtained from the piezometers around the IL. The temperature measurements were obtained using Fibre Optic Distributed Temperature Sensing (FO-DTS) and three Vertical Temperature Profiles (Figure 3.19) (Chapter 8).

Figure 3.19. Instrumentation around the Instrumented Lake.
L1-L7 are 12 mm piezometers. The deployment of the FO-DTS cable is denoted in red. The locations of the Vertical Temperature Profiles are also shown. Moraines are shown in brown. The figure also illustrates the differences in lakebed sedimentology.
3.5.2. Topographic surveying of the piezometers

The piezometers in western Skeiðarársandur and the Skaftafellssjökull foreland were levelled to a single datum in August 2012, using a Leica Geosystems TCRP1205 Total Station (TS). It was used with a 360° prism. The accuracy is ±2-5mm (Leica user manual, 2004). In the Skaftafellssjökull foreland, the wells were levelled to an arbitrary datum (which was assigned to be 100 m), chosen by the line of sight to the maximum number of wells. When possible, the levelling was done to the top of the wells. In instances when this was not possible, the distance from the ground to the top of the well was measured, and then added in order to calculate the height of the well. When the wells were not visible from the datum, the TS was placed at an intermediate high point which enabled sight of the desired wells and levelled back to the datum. Similar procedures were followed during the topographic levelling of the wells at western Skeiðarársandur, although more intermediate points were required due to the size of the sandur. Back sightings were then taken to the former location of the TS. When setting up, maximum efforts were made to place the TS as close as possible to the location where the staff was previously. The differences between the back sights and fore sights were generally below 2 cm. The elevation of the piezometers are found in Appendix 1).

3.5.3. Monitoring of groundwater levels

Groundwater levels at the Skaftafellsjökull foreland were monitored both manually and automatically. Manual groundwater level monitoring was performed using a Solinst acoustic dip meter, which emits a sound when the sensor touches water. This then allows the measurement of the height of the pressure head (e.g. Brassington, 2007). In order to ensure accuracy and precision, measurements were taken by two people, until a
consensus within 0.5 cm was reached (Robinson et al., 2008). The monitoring of groundwater levels at the Skaftafellsjökull foreland was usually done twice a day.

Automated monitoring of groundwater levels, temperatures and EC at the Skaftafellsjökull foreland were performed using two types of Solinst automated pressure transducers: The Solinst model 3001 Level Temperature Conductivity (LTC) Levelogger Junior measures (accuracy in brackets) groundwater levels (0.1% Full Scale), temperature (±0.1°C), and Electrical Conductivity (2% or 20µS/cm). The Solinst Levelogger Junior Edge measures groundwater Level (0.1% FS) and Temperature (±0.1°C). Additionally, a Solinst model 3001 Barologger Edge was used to measure air pressure during the two field seasons. These measurements are needed to separate between actual changes in groundwater levels from those which reflect changes in air pressure (Brassington, 2007). The accuracy of the barologger is (±0.05 kPa). The Barologger was emplaced above the water table at GW12 (Figure 3.18).

The pressure transducers were emplaced at the transect, (T1-T3) and in a stilling well (MW) at the Skaftafellsá meltwater river (Figure 3.18) in order to investigate meltwater river-groundwater exchange. Groundwater levels, river levels; temperature and EC were recorded hourly between 20/06/2012 to the 31/08/2012, including during three weeks in which the field site was unmanned (31/07-23/08/2012). The data was measured hourly in order to be synchronised with the measurements from the IMO. The data was then compensated for fluctuations in atmospheric pressure using the Solinst Levelogger 4.0 software. Hydraulic heads were calculated by adding the pressure heads (obtained from the pressure transducers) and the elevation (section 3.3.2).
4. Long-term variability of proglacial groundwater-fed hydrological systems in Skeiðarársandur

4.1. Introduction

The aim of this chapter is to investigate the long term impacts of fluctuations in the position of the glacier margin on proglacial groundwater systems (objective i). The chapter maps long term changes (between 1986 to 2012) in the spatial extent of proglacial groundwater seeps and groundwater levels (monitored between 2000 and 2012) in western Skeiðarársandur, which is impacted by rapid glacial retreat, glacial surges, and jökulhlaups (section 3.3). In spite of the importance of proglacial groundwater systems and the likelihood that they will be impacted by climatically-driven changes, there is a severe lack of research into the potential impacts of climate change and glacier retreat on the extent and distribution of proglacial groundwater-fed hydrological systems. The specific objectives for this chapter are:

2. To monitor long term (2000-2012) changes in groundwater levels in western Skeiðarársandur.

3. To determine the controls and drivers on the extent of proglacial groundwater seeps and levels.
4.2. **Methods of monitoring long term changes in proglacial groundwater levels and the extent of groundwater seeps**

The impact of long term changes in the position of the glacier margin on proglacial groundwater hydrological systems and groundwater levels (objective i) was investigated in western Skeiðarársandur (Figure 3.4). The changes in the extent of groundwater seeps in western Skeiðarársandur were mapped from historical aerial imagery (dating from 1986, 1997, and 2012) using ArcMap© 9.3.1. The photographs were georectified using Ground Control Points (GCP) as described by Bennett et al. (2010). Groundwater seeps and groundwater-fed streams were then mapped in the three images based on water colour and shading. Water colour, and hence black and white shading, is determined by the interaction between the upwelling light reflectance of suspended inorganic and organic compounds and the downwelling of solar irradiance. When black and white images are used, the high turbidity and reflectance of meltwater make them appear lighter than groundwater. When colour images are used, the high turbidity of meltwater streams makes them appear brown. Conversely, the low turbidity of groundwater-dominated bodies makes them appear green-brown (Jerome et al., 1994a, b). These differences were therefore used to map groundwater seeps and meltwater streams. The likelihood of the mapped areas in western Skeiðarársandur to be impacted by groundwater has been ground-truthed. A similar approach was previously used in the western USA to map changes in the extent of groundwater-fed fens following changes in snowmelt (Drexler et al., 2013).

Groundwater levels in western Skeiðarársandur were monitored since July 2000 by Robinson (2003) and Robinson et al. (2008). Their piezometers were emplaced in a transect which projected away from the glacier margin for ~1.5 km, around moraine lake basins, and in areas of groundwater seeps (Figure 3.8). However, following the
continuous retreat of the Skeiðarárjökull margin (Figure 3.6), groundwater levels at western Skeiðarársandur have declined substantially and fell below the intake of many piezometers. Therefore, new piezometers were installed in July 2011 in order to augment the network and continue the long term monitoring of proglacial groundwater levels in Skeiðarársandur. The new piezometers were emplaced near moraine lakes, near the remains of groundwater seeps, and near a small meltwater channel (Figure 3.8). The design of the piezometers installed in 2011 is similar to the piezometers which were installed at the Skaftafellsjökull margin (section 3.5.1). Groundwater levels in western Skeiðarársandur area were monitored using the same methods and device (Solinst dip meter) which were used at the Skaftafellsjökull foreland (section 3.5.3). The topographic levelling of the piezometers in western Skeiðarársandur was performed with the same instrument as the levelling in Skaftafellsjökull. However, in order to extend the existing records, the 2011 piezometers were tied into the 2000 datum using relative heights from a 2000 piezometer baseline (P31m, whose top is at the height of 82.78 m). The top of the pipe was used, as this height is less likely to change than the distance between the top of pipe and the ground following sediment erosion and deposition.

4.3. Temporal changes in the extent of groundwater seeps

4.3.1. 1986 aerial photograph

The extent of groundwater seeps and lakes in 1986 (the Icelandic Geodetic Survey (Landmælningar Íslands [LMÍ]), 1986) is shown in Figure 4.1. The glacier margin retreated a net distance of ~2.5 km between the start of monitoring in 1932 and the time of this image. Groundwater seeps in this image have the largest areal extent, ~ 2,767,200 m² of the three time slices (Table 4.1). The main area of groundwater seeps is bordered to the north and east by a large meltwater and groundwater-fed braided channel (“the Gigjukvisl
Section 4

Long term changes

tributary”); to the west by an area of low-relief moraines and stagnant ice that is located to
the north of Twin Peaks Lake (TPL); and to the south by the high-relief moraine belt. In
1986, groundwater seeps covered the entire area between the Gigjukvísl tributary and the
eastern limit of the low-relief moraines. The main seeps area was connected to the seeps
east of TPL by an active groundwater-fed channel. Additional areas of groundwater seeps
existed east of the Gigjukvísl tributary and to the north of TPL and Lake A (Figure 4.1).

Figure 4.1. The extent of groundwater seeps in western Skeiðarársandur in 1986 (LMÍ, 1986).
Groundwater seeps are outlined in blue. Lakes are denoted in turquoise. The position of the
glacier margin (red line) is only an approximation, due to the extensive amounts of buried
ice in this area.

4.3.2. 1997 aerial photograph

The extent of groundwater seeps in 1997 and the impacts of the November 1996
jökulhlaup (LMÍ, 1997) are shown in Figure 4.2. Following the advances during the mid
1980s and the 1991 surge, the glacier margin has advanced by ~ 420 m relative to its
position in 1978 (Figure 4.2). The area of groundwater seeps has declined by ~20% since
1978 (Table 4.1). The main declines took place around the main jökulhlaup route, near
jökulhlaup outlets at the glacier margin, and to the north west of TPL. Approximately
Chapter 4 Long term changes

430,000 m2 (~18%) of the groundwater seeps that were mapped in 1978 were buried by jökulhlaup deposits. Following the jökulhlaup, the main seep area has shrunk and moved southwards, away from the margin. However, it has also expanded to the east, with seeps replacing areas that contained braided channels in 1986 (Figure 4.1).

Figure 4.2. The extent of groundwater seeps in western Skeiðarársandur in 1997 (LMÍ, 1997). Groundwater seeps are outlined in blue. Lakes are denoted in turquoise. The figure also shows the main route (denoted by the black arrow) and outlets of the November 1996 jökulhlaup. The position of the glacier margin is only an approximation, due to the extensive amounts of buried ice in this area.

4.3.3. 2012 aerial photograph

The extent of groundwater seeps in 2012 is presented in Figure 4.3 (Google Earth, 2013). The figure illustrates the continued recession of western Skeiðarárjökull, which retreated 845 m beyond its position in 1997. The mean annual rate of glacier retreat has also substantially increased during this period (Figure 3.6). During this period of retreat there has also been a substantial decline in the area of groundwater seeps and lakes (Figure 4.4, Table 4.1).
Figure 4.3. The extent of groundwater seeps in western Skeiðarársandur in 2012 (Google Earth, 2013).

Groundwater seeps are outlined in green. The lakes are denoted in turquoise. The position of the glacier margin is only an approximation, due to the extensive amounts of buried ice in this area.
The area of groundwater seeps has declined by ~97% between 1986 and 2012, with only small springs remaining within the main groundwater seep area (Figure 4.4). The surface area and perimeters of lakes also declined substantially between 1986 and 2012, with the areas of TPL and GW2 Lake declining by 95% and 44%, respectively. Many of the smaller lakes have substantially shrunk or completely dried out, including Lake A (Figure 4.5, Table 4.1).
Figure 4.5. Changes in the extent of groundwater seeps and lakes in western Skeiðarársandur (1986-2012).

The figure shows the extent of groundwater seeps in 1986 (red), 1997 (blue) and 2012 (green). The position of the glacier margin is shown by the solid lines of the respective colours. The area of Twin Peak Lake is illustrated for the following years: 1986 (turquoise), 2012 (orange). The 1997 extent of Twin Peaks Lake was very similar to that in 1986 and was therefore omitted to improve clarity. The image was taken from Levy et al. (2015)
Table 4.1. Changes in the area and perimeter of proglacial groundwater seeps and lakes in western Skeiðarársandur (1986-2012).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (m²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seeps</td>
<td>2,767,200</td>
<td>2,195,800</td>
<td>90,600</td>
<td>-21</td>
<td>-97</td>
</tr>
<tr>
<td>TPL</td>
<td>119,000</td>
<td>106,500</td>
<td>5,900</td>
<td>-10</td>
<td>-95</td>
</tr>
<tr>
<td>Lake A</td>
<td>15,600</td>
<td>12,800</td>
<td>0</td>
<td>-18</td>
<td>-100</td>
</tr>
<tr>
<td>GW2 lake</td>
<td>16,600</td>
<td>18,800</td>
<td>9,200</td>
<td>13</td>
<td>-44</td>
</tr>
<tr>
<td>Perimeter (m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seeps</td>
<td>110,200</td>
<td>121,000</td>
<td>9,300</td>
<td>-10</td>
<td>-91</td>
</tr>
<tr>
<td>TPL</td>
<td>2,900</td>
<td>2,400</td>
<td>300</td>
<td>-18</td>
<td>-88</td>
</tr>
<tr>
<td>Lake A</td>
<td>650</td>
<td>525</td>
<td>0</td>
<td>-19</td>
<td>-100</td>
</tr>
<tr>
<td>GW2 lake</td>
<td>740</td>
<td>746</td>
<td>500</td>
<td>-1</td>
<td>-33</td>
</tr>
</tbody>
</table>

4.4. Changes in groundwater levels in western Skeiðarársandur

This section describes changes in proglacial groundwater levels between July 2000 and August 2012 (objective 2) (Table 4.2). Proglacial groundwater levels were monitored regularly over a ~6 week period in the summers of 2000, 2001 and 2011. Additionally, spot measurements were taken in March 2001, October 2001, August 2009, April 2011, and the summer of 2012. Groundwater levels at the study site declined substantially between July 2000 and 2012 (Figure 4.6). These declines were observed over both decadal (2000-2012) and annual (2011-2012) time scales, and have shown a considerable spatial variability. Groundwater levels have fallen below the bottom of the borehole screened section (intake) in most piezometers at the site, meaning that only *minimum* amounts of water table decline can be measured. Such declines were already observed at P4, P6 and WT A by August 2009 (Figure 4.6). The largest measured declines between 2000 and 2009 were >1.97 m near the glacial margin (borehole P6) and >1.77 m in an area of dried groundwater seeps north of TPL (borehole P3) (Table 4.2). Groundwater levels at P13, located near the remains of the main groundwater seep area (Figure 3.8) fell by ~1.55 m between 2000 and 2012. However, this area contained the
only piezometer in the 2000 network where groundwater levels have not fallen below the intake. Groundwater levels in the piezometers installed in 2011 have also declined between August 2011 and August 2012 (Table 4.2).

Table 4.2. Changes in proglacial groundwater levels at the different hydrogeological environments of western Skeiðarársandur (July 2000-August 2012).

Piezometers in italics were installed in July 2011. Water table elevation with < show the elevation of the bottom of the piezometer, meaning that groundwater fell below this level. Values of change with > means that groundwater levels have dropped below the borehole intake, hence only the minimum levels of decline are shown.

<table>
<thead>
<tr>
<th>Piez.</th>
<th>August 2000</th>
<th>August 2001</th>
<th>August 2009</th>
<th>August 2011</th>
<th>August 2012</th>
<th>Change (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater seeps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P132m</td>
<td>78.577</td>
<td>78.385</td>
<td>76.890</td>
<td>77.025</td>
<td>-1.552</td>
<td></td>
</tr>
<tr>
<td>P42m</td>
<td>85.993</td>
<td>85.828</td>
<td><84.975</td>
<td><84.975</td>
<td>->1.063</td>
<td></td>
</tr>
<tr>
<td>P32m</td>
<td>82.283</td>
<td>82.227</td>
<td>81.270</td>
<td>81.275</td>
<td>->1.773</td>
<td></td>
</tr>
<tr>
<td>GW3</td>
<td></td>
<td></td>
<td></td>
<td>77.771</td>
<td>77.506</td>
<td>-0.265</td>
</tr>
<tr>
<td>Near margin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P62m</td>
<td>91.486</td>
<td>91.178</td>
<td><89.820</td>
<td><89.820</td>
<td>->1.971</td>
<td></td>
</tr>
<tr>
<td>Moraine lakes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT A</td>
<td>81.161</td>
<td>80.951</td>
<td><80.235</td>
<td></td>
<td>->0.926</td>
<td></td>
</tr>
<tr>
<td>GW1</td>
<td></td>
<td></td>
<td></td>
<td>78.948</td>
<td><78.575</td>
<td>->0.373</td>
</tr>
<tr>
<td>GW2</td>
<td></td>
<td></td>
<td></td>
<td>75.582</td>
<td>75.592</td>
<td>-0.100</td>
</tr>
<tr>
<td>P5</td>
<td></td>
<td></td>
<td></td>
<td>76.317</td>
<td><75.71</td>
<td>->0.606</td>
</tr>
<tr>
<td>GW13</td>
<td></td>
<td></td>
<td></td>
<td>78.662</td>
<td><78.147</td>
<td>>0.515</td>
</tr>
<tr>
<td>Meltwater channels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW7 (5 m from the channel)</td>
<td></td>
<td></td>
<td></td>
<td>69.680</td>
<td>69.610</td>
<td>-0.070</td>
</tr>
<tr>
<td>PTÅ (40 m from the channel)</td>
<td></td>
<td></td>
<td></td>
<td>69.923</td>
<td>68.777</td>
<td>-1.146</td>
</tr>
<tr>
<td>PTÇ (70 m away from channel)</td>
<td></td>
<td></td>
<td></td>
<td>70.139</td>
<td>68.847</td>
<td>-1.292</td>
</tr>
</tbody>
</table>
4.5. Changes in proglacial water budget

Changes in water budget (precipitation minus Potential Evaporation) can impact groundwater levels and the extent of groundwater seeps. Therefore, the annual and seasonal water budgets in western Skeiðarársandur were calculated in order to determine their roles in the changes in proglacial groundwater seeps and groundwater levels (objective 3). Temperature and precipitation data were obtained from the Icelandic Meteorological Office (IMO) station at Kirkjubæjarklaustur, located ~35 km west of the site. This station was chosen because it is the closest one whose records span through the whole study period (1986-2012). The meteorological data was smoothed using Order 3 Moving Average (MA), which was chosen in order to minimize the losses of time periods.
at the end of the time series, which is a major drawback associated with higher orders of MA (Makridakis et al., 1998).

Potential Evaporation (PE) was calculated from the meteorological data using the Thornthwaite (1948) equation [Equation 4.1]. This method previously provided broadly comparable results to the more data-intensive Bowen Ratio Energy Budget (BREB) methods, and has been ranked 6th out of 14 equations in a study comparing different equations for determining PE (Rosenberry and LaBaugh, 2008). It was therefore chosen for this study due to its previous successful uses and low data requirements, as it only requires mean monthly temperatures.

\[
E = \left(1.6 \times \left(\frac{10T_a}{I} \right)^{6.75 \times 10^{-7} I^3 - 7.71 \times 10^{-5} I^2 + 1.79 \times 10^{-2} I + 0.49} \right) \left(\frac{10}{d} \right)
\]

Equation 4.1. Calculation of Potential Evapotranspiration (Thornthwaite, 1948)

Where \(E \) is evaporation (mm/day), \(T_a \) is the mean monthly air temperature (°C), and \(I \) is the Annual Heat Index (AHI), which is calculated as \(I = \sum i \), where \(i = (T_a/5)^{1.514} \), and \(d \) is the number of days in each month. Due to the sparse vegetation at the field site, transpiration was omitted from the calculations. Water budget was then calculated by subtracting PE from precipitation.

The mean annual temperature at the Kirkjubæjarklaustur meteorological station during the study period (1986 to 2012) was 5.02 ± 0.52 °C. The mean annual precipitation was 1753 ± 229 mm (IMO, 2013). Precipitation was approximately three times higher than PE during the study period, resulting in a constantly positive annual water budget which ranged between 1076 and 1589 mm (Figure 4.7). The annual and most of the seasonal mean air temperature and water budgets have increased during the study period. However,
seasonal variability in water budget was observed, with the highest seasonal water budgets occurring in winter and autumn and the lowest in summer. During the full study period (1986-2012), winter and autumn water budgets increased by 117 and 284 mm respectively. Conversely, the increases in spring and summer water balance were much smaller (Table 4.3).

The changes in annual and seasonal water budget during the main period of decline in the extent of groundwater seeps (1997-2012) showed a mixed trend, which differs from the general increases which were measured during the full study period (Table 4.3). The annual and autumn water budgets have increased substantially (350-430 mm), while winter and spring water budgets have increased by ~100 mm. Conversely, summer water budget declined by 110 mm. This is mainly due to lower summer precipitation rather than higher PE. However, despite these declines, the summer water budget still remained positive (Table 4.3).

Table 4.3. Changes in the Moving Average (MA) of annual and seasonal temperature, precipitation, Potential Evaporation (PE), and water budget in the study area from 1986-2012 and 1997-2012 (IMO, 2013).

The seasonal distribution is as follow: Winter (Dec.-Feb.), Spring (March-May), Summer (June-Aug.), Autumn (Sept.-Nov).

<table>
<thead>
<tr>
<th></th>
<th>1986-2012</th>
<th>1997-2012</th>
<th>change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Start of period</td>
<td>End of period</td>
<td>Change</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual</td>
<td>4.63</td>
<td>5.71</td>
<td>1.08</td>
</tr>
<tr>
<td>Winter</td>
<td>0.23</td>
<td>1.22</td>
<td>0.99</td>
</tr>
<tr>
<td>Spring</td>
<td>3.59</td>
<td>5.27</td>
<td>1.68</td>
</tr>
<tr>
<td>Summer</td>
<td>10.43</td>
<td>11.31</td>
<td>0.88</td>
</tr>
<tr>
<td>Autumn</td>
<td>4.29</td>
<td>5.36</td>
<td>1.07</td>
</tr>
<tr>
<td>Precipitation (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual</td>
<td>1548</td>
<td>1967</td>
<td>419</td>
</tr>
<tr>
<td>Winter</td>
<td>448</td>
<td>598</td>
<td>150</td>
</tr>
<tr>
<td>Spring</td>
<td>337</td>
<td>402</td>
<td>65</td>
</tr>
<tr>
<td>Summer</td>
<td>324</td>
<td>369</td>
<td>45</td>
</tr>
<tr>
<td>Autumn</td>
<td>439</td>
<td>707</td>
<td>268</td>
</tr>
<tr>
<td>PE (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual</td>
<td>412</td>
<td>453</td>
<td>41</td>
</tr>
<tr>
<td>Winter</td>
<td>8</td>
<td>21</td>
<td>13</td>
</tr>
<tr>
<td>Spring</td>
<td>87</td>
<td>113</td>
<td>26</td>
</tr>
<tr>
<td>Summer</td>
<td>208</td>
<td>210</td>
<td>2</td>
</tr>
<tr>
<td>Autumn</td>
<td>99</td>
<td>102</td>
<td>3</td>
</tr>
<tr>
<td>Water budget (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

97
Chapter 4 Long term changes

<table>
<thead>
<tr>
<th></th>
<th>Annual</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Budget (mm)</td>
<td>1082</td>
<td>440</td>
<td>250</td>
<td>136</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>1460</td>
<td>556</td>
<td>287</td>
<td>179</td>
<td>624</td>
</tr>
<tr>
<td></td>
<td>378</td>
<td>117</td>
<td>36</td>
<td>42</td>
<td>284</td>
</tr>
<tr>
<td></td>
<td>1221</td>
<td>458</td>
<td>229</td>
<td>245</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>1654</td>
<td>575</td>
<td>332</td>
<td>135</td>
<td>672</td>
</tr>
<tr>
<td></td>
<td>433</td>
<td>117</td>
<td>102</td>
<td>-110</td>
<td>351</td>
</tr>
</tbody>
</table>

Figure 4.7. Moving Average (MA) of annual and seasonal water budget in western Skeiðarársandur (IMO, 2013).

4.6. Interpretation and discussion

This section describes the spatial distribution in the changes of proglacial groundwater levels and then discusses various hypotheses for the observed declines in proglacial groundwater levels and the extent of groundwater seeps.
4.6.1. The spatial distribution of changes in groundwater levels

Groundwater levels in western Skeiðarársandur have declined between 2000 and 2012, with groundwater levels falling below the intake in most piezometers. However, these declines showed a considerable spatial variability (Table 4.2). The largest decline in groundwater levels between 2000 and 2009 was measured at P6, located near the Skeiðarárjökull margin, adjacent to an area of ice-cored moraines and stagnant ice (Table 4.2, Figure 3.8). This fall in groundwater levels is accompanied by a reduction in the extent of the main groundwater seeps area (Figure 4.1-4.3). The importance of ice melt as a source for groundwater recharge increases with proximity to the glacial margin, as evidenced by δ¹⁸O and δD compositions (Robinson et al., 2009b). Therefore, the fall in groundwater levels at P6 could be indicative of declining recharge from glacial melt sources. Groundwater levels near the glacier margin previously showed large declines in autumn and early spring, seasons during which ablation is low (Robinson et al., 2008). This suggests that only a small component of the groundwater at these sites originates from subglacial melt, as such melt should not be significantly impacted by seasonal ablation (Flowers et al., 2003; Robinson et al., 2008). This suggests that the zone of dead and stagnant ice near the margin is the likely source of groundwater recharge during the summer months. The only location from the 2000 monitoring network where groundwater levels did not fall below the borehole intake is located near the remains of the main groundwater seep area (Table 4.2). The smallest annual (Figure 4.6) and seasonal variability in groundwater levels were also measured in this environment (Robinson, 2003). The relatively small variability is also supported by observations of groundwater discharge in the form of seep areas, which suggest that the seeps are fed by a local groundwater flow system that is imposed on the regional one (Tóth, 1963; Robinson et al., 2008). This small variability in groundwater level illustrates the relatively consistent water
supply which groundwater-fed systems provide (e.g. Tague and Grant, 2009; Muir et al., 2011).

Groundwater levels near lakes have generally declined, with levels falling below the borehole intake in many locations. These falls were coupled with substantial declines in lakes surface areas. The decline of groundwater levels near lakes has also shown considerable spatial variability. Lake A shrank continuously during the study period, and then completely dried out after 2007. Groundwater levels near Lake A also declined substantially (Table 4.1). Observations suggest that the area of Lake A consists of either a perched aquifer or an impermeable lake bed, underlain by either clay or buried ice (Robinson et al., 2008). This hypothesis is supported by observations of buried ice in Skeiðarársandur (Everest and Bradwell, 2003) and the complex and heterogeneous internal hydrology of moraines (Roy and Hayashi, 2009; Langston et al., 2011). It is suggested that the lake may have drained due to the failure of the underlying ice layer (Robinson et al., 2008). Groundwater levels in other piezometers near lakes, which were installed in 2011, have also fallen below the borehole intake (Table 4.2).

Conversely, groundwater levels near GW2 Lake have shown different dynamics. The area of this lake declined by 44% since 1986 (Table 4.1). However, there is a much smaller fall in groundwater levels, with only a 0.1 m decline between August 2011 and 2012 (Table 4.2). These differences illustrate the spatial variability in the patterns of decline in groundwater levels around lakes and in moraine basins in western Skeiðarársandur.

4.6.2. Possible causes for the declines in groundwater levels and seeps

This section suggests various hypotheses for the substantial declines in groundwater levels and in the extent of groundwater seeps in western Skeiðarársandur (objective 3).
Chapter 4

The first suggested hypothesis for these observed declines is changes in proglacial water budget. Figure 4.7 and Table 4.3 show that the annual and most of the seasonal water budgets have increased over the study period, especially during winter and autumn. Conversely, summer water budgets have fallen by ~100 mm since 1997. The fall in summer water budget may partially explain the declines in groundwater seeps and levels (which have been measured in summer). However, this fall may be expected to be offset by the increases in winter and autumn precipitation. Higher rainfall can also increase groundwater recharge indirectly by enhancing glacial ablation (Wolfe and English, 1995), with rainfall becoming especially effective in debris-covered glaciers such as Skeiðarárjökull (e.g. Nield et al., 2013). The increase in autumn and winter precipitation may therefore be expected to increase groundwater recharge and storage. This suggests that changes in water balance are important but not the sole factors in the decline of groundwater levels and groundwater seeps.

Glacier retreat is projected to substantially alter the hydrology of Vatnajökull, reducing runoff and diverting river routes. Such changes are also projected to impact subglacial groundwater systems (Flowers et al., 2003; 2005). Glacier retreat can lower the ice overburden pressure and hydraulic gradient, which will reduce groundwater flow (Haldorsen and Heim, 1999; Piotrowski, 2007). Such changes could be an important cause for the declines depicted in Figure 4.1-4.3. However, at present the effect of the glacially-induced hydraulic gradient on the proglacial zone is not fully understood.

Changes in proglacial groundwater flow may also be caused by the lowering of the glacier bed and river outlets. Sandur development models suggest that glacier retreat leads to an upstream lowering of river equilibrium profile, which encourages fluvial incision and the formation of alluvial terraces (Thompson and Jones, 1986; Thompson, 1988). The lowering of the equilibrium profile would then direct flow into the lowest channel (e.g. Thompson, 1988). The impact of the lowering of the equilibrium profile can be augmented when glaciers retreat into subglacial overdeepenings. Such retreat can increase the
sensitivity of the proglacial zone to glacial margin fluctuations, where relatively small fluctuations in the position of the glacier margin cause fairly large changes in the upstream long profile of proglacial rivers (Marren and Toomath, 2013).

The lowering of river outlets due to an overdeepening is a possible cause for the observed declines in groundwater seep extent and levels. Radio echo soundings have identified two principal overdeepenings associated with Skeiðarárjökull. The larger overdeepening extends from the glacier’s centreline to the eastern margin. The second one is located towards the western extremity of the margin (Figure 3.4B), associated with the drainage of the river Súla (Björnsson et al., 1999). However, neither of these overdeepenings impact the immediate study area. Therefore, whilst over-deepened basins are clearly influential in some parts of the glacier margin, it is unlikely that this specific part of the margin is significantly impacted by an overdeepening, and therefore the decline in groundwater levels are unlikely to be affected by this phenomenon.

Groundwater recharge from meltwater rivers, through river-aquifer exchange, is an important control on proglacial groundwater levels (Cooper et al., 2002; Magnusson et al., 2014). The location of meltwater rivers exerts an important control on such exchange; hence a reduction in river-aquifer exchange, due to changes in the position of meltwater rivers, provides another possible explanation for the observed changes in the proglacial groundwater systems. However, the location of the main Gígjukvísl and Súla river channels did not change considerably during the study period, which suggests that river-aquifer exchange should not have decreased. Additionally, the recent drainage changes in Skeiðarársandur have substantially increased the discharge in the Gígjukvísl. These changes are expected to augment, rather than reduce, groundwater recharge through river-aquifer exchange. Therefore, although river-aquifer exchange has not been measured directly, its decrease is probably not the main cause for the declines depicted in Figure 4.1-4.3.
Deglaciation and isostatic uplift have been previously shown to impact topography, hydrology, hydrogeology, and ecology (Glaser et al., 2004; Solberg et al., 2008). The rates of vertical glacio-isostatic uplift in response to glacial retreat around southern Vatnajökull range between 9-25 mm/year (Pagli et al, 2007). These rates suggest that the study area has risen by 0.23 to 0.65 m during the study period (1986-2012) and between ~0.14 m to 0.38 m during the main decline in groundwater seeps and levels (1997 to 2012). However, even when the higher rates of these estimations are used, the uplift rates remain below the observed declines in most piezometers (Table 4.2). Hence, although glacio-isostatic uplift may have contributed to the decline in groundwater levels and seeps, it is probably not its main cause.

The deposition of volcanic tephra buries groundwater seeps and deepens the distance between the water table and the surface, which reduces the aquifer's responsiveness to precipitation. These processes may also explain some of the declines in groundwater levels and seeps in western Skeiðarársandur. Grímsvötn, situated under the Vatnajökull ice cap, ~40 km north of the site (Figure 3.2) is Iceland's most active volcanic system in historical times (Thordarson and Larsen, 2007). During the study period, it has erupted in 1996, 1998, 2004, and May 2011 (Jude-Eton et al., 2012). The eruption in May 2011 released 0.6-0.8 km³ of tephra (Guðmundsson et al., 2012). Tephra deposits buried many groundwater-fed channels and seeps. Measurements taken at western Skeiðarársandur in August 2011 showed a wide spatial variability in the depths of tephra deposits. The mean depth of tephra deposits near piezometers was 0.055 (±0.031) m. The depth of tephra deposits near groundwater-fed channels and seeps exceeded 0.40 m. However, these measurements were obtained three months after the eruption, during which the tephra has been subjected to extensive fluvial and aeolian entrainment and deposition. In addition to the fairly transient nature of tephra deposition, groundwater levels have declined between August 2011 and August 2012 (Table 4.2), during which there was no volcanic activity. Therefore, although burial by tephra deposits can clearly have a localised
Chapter 4

Long term changes

impact on groundwater seeps, it was not a major cause for the declines depicted in Figure 4.1-4.3.

4.6.3. Implications of the declines in groundwater seeps and levels

This study observes substantial declines in the extent of proglacial groundwater seeps in an area of rapid glacial retreat. It is suggested that the major declines in proglacial groundwater levels and groundwater seeps have had major impacts on the terrestrial and aquatic ecology of Skeiðarársandur. This hypothesis is supported by field observations showing higher densities of vegetation associated with groundwater seep areas (Figure 3.7) and highlighted the important ecological niches provided by groundwater-fed kettle holes (Robinson et al., 2009a). In addition, there is a wealth of literature highlighting the importance of groundwater contributions to increased aquatic diversity in proglacial areas (e.g. Milner and Petts, 1994; Crossman et al., 2011). This suggests that groundwater seeps form important microsites, which enhance terrestrial ecological establishment and provide ameliorated conditions from the frequent high sediment mobility, strong winds, and lack of fertile soils which often prevail in recently-deglaciated areas (Jumpponen et al., 1999; Marteinsdóttir et al., 2010; 2013).

As proglacial groundwater flow, spring discharge, and groundwater contributions to runoff and storage are projected to alter due to glacial retreat (Haldorsen et al., 2010; Rutter et al., 2011; Blaen et al., 2014), these changes are projected to adversely impact proglacial ecosystems and possibly lead to the redistribution and extinction of endemic species (Brown et al., 2007a, b; Milner et al., 2009; Jacobsen et al., 2012; Blaen et al., 2013). Therefore, due to the importance of groundwater to proglacial ecology, it is suggested that further decline in groundwater levels and in the extent of groundwater seeps in Skeiðarársandur will adversely impact available water sources and sandur ecology. The
hypotheses for the controls and implications of long term glacier retreat on proglacial groundwater-surface water exchange are summarised by a conceptual model (Figure 4.8).

![Diagram](image)

Figure 4.8. A conceptual model of the controls and implications of long term glacier fluctuations on proglacial groundwater-surface water exchange (from Levy et al., 2015).

The dashed box shows suggested implications, which were not directly investigated in this study.

4.7. Conclusions

Western Skeiðarárjökull has retreated approximately 1 km during the study period (1986-2012). This retreat was coupled with a decline of ~97% in the areas of groundwater seeps and many of the lakes at the site. Most of these declines took place after 1997, when the
rate of glacial retreat has increased by a threefold. Groundwater levels at the study area have also fallen substantially between 2000 and 2012, although the magnitude of these declines varies spatially. The largest declines were observed near the glacier margin. The smallest declines in groundwater levels were observed near current groundwater seeps. The annual water budget has increased substantially between 1986 and 2012. Seasonal water budgets have also increased in every season except summer, where it has declined.

The geomorphology, hydrology and groundwater systems of Skeiðarársandur are substantially impacted by glacial fluctuations, surges, and jökulhlaups. The 1991 surge steepened the topography and transformed surface and subsurface drainage at Skeiðarársandur. The November 1996 jökulhlaup led to the formation of kettle holes and extensive erosion and deposition of sediment. Jökulhlaup deposits buried ~18% of the area of groundwater seeps that were mapped in 1986.

It is suggested that the combination of jökulhlaups and changes in water budget and in the hydraulic gradient caused by glacier retreat, alongside vertical glacio-isostatic uplift is probably the cause for the observed declines in groundwater seeps and levels. However, further research is needed in order to verify and quantify the contribution of the different factors. Groundwater seeps support important ecological microsites in this harsh proglacial environment. A continuous decline in groundwater levels and seeps is therefore suggested to adversely impact Skeiðarársandur’s proglacial ecology (Levy et al., 2015).
5. Proglacial Hydrogeology

5.1. Introduction

The aim of this chapter is to describe the hydrogeological characteristics of the proglacial zones of Skaftafellsjökull and Skeiðarársandur such as hydraulic conductivity, aquifer volume, and groundwater discharge and velocity. These parameters are necessary for the understanding of horizontal and vertical groundwater flow and groundwater-surface water exchange. However, an extensive hydrogeological framework for Skeiðarársandur has already been provided (e.g. Bahr, 1997; Robinson, 2003; Robinson et al., 2008). Therefore, this study focuses on the aquifer characterisation the Skaftafellsjökull foreland.

The hydrogeology of contemporary proglacial aquifers, such as the Skaftafellsjökull foreland (Figure 3.13) and Skeiðarársandur (Figure 3.4), is impacted by a variety of geomorphic and sedimentological processes. Glaciofluvial deposition associated with both ablation-driven and jökulhlaup-related discharge fluctuations are clearly of central importance, although glacial, glaciolacustrine and aeolian processes are also influential (Maizels, 1995; Marren, 2002a; Robinson et al., 2008; Mountney and Russell, 2009). These primary depositional processes usually impact proglacial aquifers more than secondary processes such as compaction, cementation and dissolution. The hydrogeological characterisation described in this chapter is based on two approaches: (1) large-scale overview of the site’s hydrogeology based on the various geomorphic and sedimentological processes which impact the field site, and (2) a small-scale hydrogeological characterisation based on field and laboratory techniques.

The main hydrogeological property that was investigated at this study was hydraulic conductivity, which describes the ease with which a medium transmits fluids (Freeze and Cherry, 1979). An accurate measurement of hydraulic conductivity is essential for the understanding of groundwater behaviour. However, despite its importance, the
measurement of hydraulic conductivity is a significant challenge in hydrogeology (e.g. Brassington, 2007). This challenge is enhanced in proglacial settings, due to the highly varied nature of depositional processes and associated sedimentary sequences which lead to high variability in hydrogeological parameters (e.g. Caballero et al., 2002; Robinson et al., 2008; Gremaud et al., 2009; Gremaud and Goldscheider, 2010; Magnusson et al., 2014; Cabj et al., 2014). This chapter compares between laboratory (Particle Size Analysis [PSA] and constant head permeameter) and field measurements (falling head [slug] tests) of hydraulic conductivity. The results were then used to compare the hydrogeology of Skaftafellsjökull with that of Skeiðarársandur and other proglacial environments.

The specific objectives for this chapter are:

1. To measure the spatial heterogeneity in hydraulic conductivity at the Skaftafellsjökull foreland using laboratory and field measurements.

2. To compare between the different methods for determining hydraulic conductivity.

3. To calculate the hydrogeological properties of the Skaftafellsjökull foreland: groundwater discharge, aquifer volume and groundwater velocity.

5.2. Dominant geomorphic processes and hydrological environments at the Skaftafellsjökull foreland

This section describes the dominant geomorphic processes at the Skaftafellsjökull foreland, notably glaciofluvial and glacial processes. These varied processes are the main cause for the high spatial variability in hydraulic conductivity at the site. In contrast to Skeiðarársandur, the Skaftafellsjökull foreland is mainly impacted by glacial processes,
such as moraine development, glaciofluvial processes (Marren, 2002b) rather than glacial surges and jökulhlaups.

5.2.1. Glaciofluvial deposits

Glaciofluvial deposits are deposited by meltwater streams which originate at the glacier margin. These deposits are generally composed of coarse sand and gravel size, which then becomes finer downstream (e.g. Anderson, 1989). Glaciofluvial deposits have high hydraulic conductivity, of around 1.00×10^0 to 1.00×10^2 m/day (Brassington, 2007). Therefore, coarse-grained glaciofluvial sediments form extensive aquifers in areas that were previously glaciated in North America (e.g. Burns et al., 2010; Bajc et al., 2014) and Europe (e.g. Bayer et al., 2011).

The largest extent of glaciofluvial deposits at the Skaftafellsjökull foreland is associated with the active braid plain of the Skaftafellsá. This area consists of outwash and is characterised by active and relict braided channels, that reflect the lateral migration of the Skaftafellsá (Figure 5.1). The majority of the glaciofluvial deposits at the Skaftafellsjökull foreland originated from low-magnitude, high-frequency events, which are mainly controlled by ablation (e.g. Marren, 2002b). This is in stark contrast to Skeiðarársandur, where high magnitude, low frequency events play a major role in the deposition of sandur glaciofluvial deposits (e.g. Robinson et al., 2008). Fluctuations of the glacier margin are an important control on channel development and spacing at both Skeiðarársandur (Robinson et al., 2008) and the Skaftafellsjökull foreland, with drainage patterns and channel positions continuously changing in response to advances and retreats of the margin (Marren, 2002b; Marren and Toomath, 2013; 2014). For instance, the ongoing retreat of Skaftafellsjökull has resulted in the abandonment of the western branch of the Skaftafellsá such that the eastern channel is the only active river draining the ice margin (Figure 5.1).
Significant drainage changes have taken place since the image was taken. The main ones are the expansion and merging of the ice-contact lakes and drainage diversion causing the drying of the western branch of the Skaftafellsá. The black box shows the approximate location of Figure 3.11, which shows the dry branch of the Skaftafellsá.

5.2.2. Glacial deposits

Till is a sediment that has been entrained and deposited by glacial ice, with little or no sorting by water (e.g. Shaw, 1985). Till deposits are complex and can be highly heterogeneous, containing deposits with varied hydraulic properties (e.g. Anderson, 1989; Meriano and Eyles, 2009). The hydraulic conductivity of till can vary over seven orders of magnitude (Freeze and Cherry, 1979). The origin and secondary processes which impact till are important determinants of its hydraulic conductivity (e.g. Hendry, 1982; Stephenson et al., 1988). Till deposits can also contain extensive layers of fine grained material, which can form extensive aquitards (e.g. Meriano and Eyles, 2009). The dominant glacial landform at the Skaftafellsjökull foreland is moraines, which surround many of the lakes at the Northern and Southern Oasis. The internal hydrology of moraines is complex, and can include layers of low permeability (e.g. Langston et al., 2013), which can impact
groundwater flow and lake formation. Therefore, it is hypothesised that the groundwater flow through moraines will be highly variable. Field observations suggest that the main till deposits at the Skaftafellsjökull foreland are found in the Northern Oasis (Figure 5.2).

![Figure 5.2. Fine-grained deposits at the Northern Oasis. A. Sequence of fine-grained clay layers near Lake Lupin (Figure 5.1). B. An attempt to emplace piezometers at the Northern Oasis lakes. Notice the poor sorting of the deposits, which consist of fine sediments and boulders. The pit is located approximately 50 m from the lakeshore of Lake Lupin.]

5.2.3. Lacustrine processes

Lacustrine deposits are generally fine grained and have low permeability (e.g. Domenico and Schwartz, 1998). These layers of fine sediment are likely to significantly impact the hydraulic conductivity of the lakes and impact lake-aquifer exchange (e.g. Blume et al., 2013). Conversely, significant groundwater-lake exchange has been observed in lakeshores with coarse deposits, such as talus slopes (e.g. Hood et al., 2006; Roy and Hayashi, 2008).
Chapter 5

Proglacial hydrogeology

Lakes and lake basins of various sizes are common features of glacier forelands, including the Skaftafellsjökull foreland (Figure 3.13). Confined topographic basins in which lakes can form can be created by a number of glacial processes including the erosion of overdeepenings (e.g. Marren and Toomath, 2013) and the melt-out of buried ice. They can also form with inter-moraine basins (e.g. Robinson et al., 2008). Glacial lakes connected with proglacial meltwater systems with high sediment loads are associated with relatively rapid sedimentation rates. Seasonal variations in meltwater discharge and sediment delivery to glacial lake basins can result in the formation of varves that are characteristic of glaciolacustrine sequences (e.g. Marren, 2002a). These typically comprise alternating layers of clay and silt-sand representing annual cycles. Lake basins that are not connected to surface meltwater rivers and that are in contrast fed by rainfall and groundwater are characterised by much lower turbidity and sedimentation rates.

Lakeshores which are underlain by fine-grained deposits at the Skaftafellsjökull foreland are located in the Northern Oasis (Figure 5.1), in drying lakebeds at the western part of the Southern Oasis, and at the eastern shore of the Instrumented Lake (IL). Conversely, the western lakeshore of the IL is underlain by coarse glaciofluvial deposits. These differences suggest high variability in the hydraulic conductivity of lakeshores at the Skaftafellsjökull margin. In addition to the lakes in the Southern and Northern Oasis, the foreland of Skaftafellsjökull is also dominated by the ice-contact lake, which has been expanding substantially following the retreat of Skaftafellsjökull into an overdeepened basin (Marren and Toomath, 2013).

5.2.4. Summary of depositional environments at the Skaftafellsjökull foreland

The retreating of the Skaftafellsjökull foreland generates complex glaciofluvial, glacial, and lacustrine processes (Marren, 2002a). In contrast to Skeiðarársandur, the dominant fluvial regime at the Skaftafellsjökull foreland is generally controlled by ablation. Furthermore,
Chapter 5 Proglacial hydrogeology

the Skaftafellsjökull foreland is not impacted by jökulhlaups and glacial surges. Most of the deposits at the Skaftafellsjökull foreland originate from glaciofluvial processes, till deposition, and lacustrine deposits (Marren and Toomath, 2013). This high variability in proglacial geomorphology is therefore expected to lead to a high variability in hydrogeological parameters.

This overview provides a good understanding for the geomorphic processes and their associated environments which impact the Skaftafellsjökull foreland and the related deposits which are characteristic to these environments. In addition to the description of the dominant depositional and geomorphic processes the current study also took field and laboratory hydrogeological measurements to determine small-scale aquifer parameters. These results are important for the hydrogeological classification of the field site (objective ii) and for the understanding of groundwater exchange with rivers (objective iv) and lakes (objective v).

5.3. Methods for determining hydraulic conductivity

Hydraulic conductivity (K) describes the ability of a porous medium to transmit fluid through interconnected voids. Therefore, it represents the ease with which fluid flows through porous media (e.g. Freeze and Cherry, 1979). Hydraulic conductivity is a key hydrogeological parameter, and its accurate estimation is necessary for accurate calculations of groundwater flow, the assessment of groundwater-surface water interactions and baseflow (e.g. Soulsby et al., 2007; Song et al., 2009; Krause et al., 2011a, b), and for understanding the transport of contaminants (e.g. Weatherill et al., 2014). This study focuses on measuring hydraulic conductivity (objective ii) in order to delineate proglacial groundwater-surface water interaction, particularly the exchange between groundwater and rivers (objective iv) and lakes (objective v).
Within proglacial environments, hydraulic conductivity is impacted by large scale geological and geomorphic processes, such as glacier margin fluctuations and jökulhlaups (e.g. Robinson et al., 2008; Bajc et al., 2014). However, hydraulic conductivity is also controlled by the development and occurrence of smaller-scale features and processes such as fractures (Hendry, 1982, 1988) sand layers (Bradbury and Muldoon, 1990), and till oxidation (Hiscock and Najafi, 2011). For instance, observations from Alberta, Canada, have shown that fracture flow within a glacial till matrix with very low hydraulic conductivity (10^{-10} m/sec) can increase groundwater flow velocities by one to three orders of magnitude (Hendry, 1982). Within proglacial settings, hydraulic conductivity can be substantially reduced by low permeability features such as clay deposits and buried ice (e.g. Langston et al., 2011; Muir et al., 2011).

However, despite the importance of hydraulic conductivity, its measurement in the field and the laboratory is complicated. Various methods exist for it, each with its merits and limitations [Table 5.1] (e.g. Freeze and Cherry, 1979; Odong, 2007).

Table 5.1. Methods for determining hydraulic conductivity. Note that the scale of test increases down the table

<table>
<thead>
<tr>
<th>Method</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle Size Analysis (PSA)</td>
<td>• Low cost</td>
<td>• High variability within the results, which are strongly dependant on the material and formula used.</td>
</tr>
<tr>
<td></td>
<td>• Ease of repeatability</td>
<td>• The small scale of the test does not address preferential flow paths and aquifer heterogeneity.</td>
</tr>
<tr>
<td></td>
<td>• Different formulas relate to different grain sizes</td>
<td>• Difficulty in obtaining representative samples of aquifer materials.</td>
</tr>
<tr>
<td></td>
<td>• Easy collection of samples</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Relatively low environmental impact</td>
<td></td>
</tr>
<tr>
<td>Laboratory permeameter tests</td>
<td>• Relative ease of obtaining samples.</td>
<td>• High variability of results</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Packing and drainage along the side of the device can impact the results.</td>
</tr>
<tr>
<td>Single well response (slug) tests</td>
<td>• Testing is done within the aquifer itself.</td>
<td>• Only a small area is tested</td>
</tr>
<tr>
<td></td>
<td>• Simple performance and analysis</td>
<td>• Requires data loggers and piezometers that will fit them.</td>
</tr>
<tr>
<td></td>
<td>• Relatively inexpensive</td>
<td>• The injection of the ‘slug’ can impact well water</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Difficult to implement in wells with high hydraulic conductivity</td>
</tr>
<tr>
<td>Pumping tests</td>
<td>• Integrates aquifer heterogeneities over larger scales</td>
<td>• High costs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Time consuming</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Requires piezometers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Difficult to implement in remote/sensitive areas.</td>
</tr>
</tbody>
</table>
The development of a good understanding of the hydrogeological framework for the
Skaftafellsjökull foreland was a key goal for the current study (objective ii). However, the
logistical requirements and costs associated with pumping tests ruled out this method.
Due to their relative simplicity, low costs, and previous successful uses in proglacial
environments, it was decided to use PSA (Robinson et al., 2008) slug tests (Cooper et al.,
2002; 2011), and laboratory permeameter (e.g. Mohanty et al., 1994) for the determination
of hydraulic conductivity at the Skaftafellsjökull foreland. However, due to the relatively
small area which slug tests impact and the difficulties in obtaining a representative sample
for PSA and permeameter measurements, it was decided to use all methods and compare
the results where applicable. The results of the slug tests were therefore compared with
PSA results from “proxy locations” near the piezometers (section 5.4.3).

5.3.1. Falling head (slug) tests

Falling head tests are based on the addition of a volume of water (“slug”) into the well and
the analysis of the dissipation of the change in head. This method has been previously
used to determine the hydraulic conductivity of a proglacial outwash plain in Svalbard
(Cooper et al., 2002; 2011). The slug tests for the current study were performed in the
0.28 mm piezometers (GW, Figure 3.18), where pressure transducers fit. The procedures
for the slug tests followed those recommended by Brassington (2007). Initially,
groundwater level in the piezometer was measured manually. After the groundwater level
was stable, a pressure transducer was then emplaced inside the piezometer, and
suspended from the top. Approximately 1-2 litres of water were then added quickly, which
instantly raised the water level and then began to dissipate. In order to ensure that the
change in hydraulic head caused by the slug had dissipated completely and that
groundwater returned to the level prior to the injection, groundwater levels were measured
manually before the pressure transducer was taken out.
Chapter 5 Proglacial hydrogeology

In addition to the general limitations of slug tests (Table 5.1), an additional problem at the Skaftafellsjökull foreland was the high hydraulic conductivities of the coarse-grained outwash deposits, in which groundwater levels returned very quickly to the levels prior to the slug injection. The quick recovery of groundwater levels made the calculation of the 0.37 time lag a crude estimate (Brassington, 2007). In order to overcome this challenge, the tests were performed at least twice in each borehole.

The analysis of the slug tests was based on the formula suggested by Hvorslev (1951), which was revised by Domenico and Schwartz (1998). Hydraulic conductivity was calculated from the results of the slug tests using Equation 5.1, found in Domenico and Schwartz (1998).

\[
K = \frac{r^2 \ln(L/r)}{2LT_0}
\]

Equation 5.1. Slug test analysis for calculating hydraulic conductivity (modified from Hvorslev, 1951)

K is hydraulic conductivity (m/day), r is the radius of the borehole (cm), L is the length of the screened section (m) and \(T_0\) is the basic time lag where the head ratio is 0.37 (Hvorslev, 1951). \(T_0\) is determined by \(h/h_0\), where \(h_0\) is the maximum height of the slug and \(h\) is the head at the aquifer at time t. \(T_0\) was analysed by plotting time against head ratio on a semi-log paper, and finding the time which corresponded with the 0.37 of the head ratio. As suggested by Brassington (2007), an additional line, parallel to the original, was drawn when the origin did not go through the origin. The head ratio was then determined using the parallel line. Another important assumption of the Hvorslev (1951) method is that the screen is completely below the water table. In order to determine that,
the depth below water table in this study was compared with the height of the top of the
screen. It was found that all the top of the screen was below the water table in all the
observations at this study, hence, the usage of Equation 5.1 was valid.

5.3.2. Particle Size Analysis (PSA)

Particle Size Analysis (PSA) is based on the important relationship between particle size
distribution and the hydraulic conductivity of a hydrogeological unit, which generally
increases with coarser particles (e.g. Shepherd, 1989). PSA equations are usually based
on a threshold grain size, of which a certain percentage of the sample is finer (Hazen,
1892). For instance, the d_{10}, the particle size at which 10% of the sample is finer, serves
as the key input parameter in many PSA empirical relationships (e.g. Hazen, 1892;
Krumbein and Monk, 1943; Carrier, 2003). Other equations which use a single parameter
are based on the percentage of clay (Puckett et al., 1985) or sand and clay particles within
a sample (e.g. Rawls and Brakensiek, 1989). However, the latter method is only
applicable to soils with maximum 70% of sand. Hence, it is possibly not applicable to
coarse-grained glaciofluvial sediments.

The main advantages of PSA are its relatively easy and inexpensive sample collection
and analysis. Additionally, the environmental impact of PSA is lower than that of methods
which require piezometers (i.e. pumping tests, slug tests) (Table 5.1). However, PSA also
has various limitations such as high variability in results, small scale representation of
aquifer parameters, and strong dependence on the formula that is used (e.g. Brassington,
2007; Ronayne et al., 2012). However, despite these limitations, PSA has been widely
used in a variety of hydrogeological settings including fluvial environments (e.g. Song et
al., 2009), desert alluvium (e.g. Alyamani and Sen, 1993) and proglacial outwash plains
(e.g. Robinson et al., 2008).
Chapter 5 Proglacial hydrogeology

PSA at the Skaftafellsjökull foreland was determined from sediment samples collected as close as possible to the water table (~0.60 m below ground). The samples were collected from lakeshores, relict glaciofluvial channels, the transect area, and from near the piezometers within the monitored area (Figure 3.13). PSA was obtained by a Coulter® LS230 laser Grain Size Analyser (GSA), which provides the volume percentage finer than the following grain sizes: 2, 1, 0.5, 0.25, 0.125, 0.063, 0.003, 0.001, 0.0005, 0.00025, 0.000125, and 0.0000625 mm. However, some of the coarser samples were too angular to be analysed on the GSA. Therefore, the PSA for these samples were obtained by wet sieving, using mesh sizes of 2, 1, 0.5, 0.25, 0.125 and 0.063 mm. These samples contained a very small amount of material below 0.063 mm. Hence, analysis of finer particle sizes was not taken on these samples.

This study compared between three PSA equations, which focus on different particle sizes: Hazen (1892), Puckett (1985), and Alyamani and San (1993). The Hazen (1892) method has been extensively used to estimate the hydraulic conductivity of clean sands, including those from glacial environments (e.g. Hazen, 1892; Robinson et al., 2008). The Hazen method estimates hydraulic conductivity based on Equation 5.2:

\[K = C(d_{10})^2 \]

Equation 5.2 The Hazen equation (1892)

Where \(K \) is hydraulic conductivity (m/day), \(C \) is a coefficient based on both grain size and sorting, and \(d_{10} \) is the particle size diameter (mm) of which 10% of the sample is finer.

When comparing various PSA equations, Bradbury and Muldoon (1990) observed that the Hazen method consistently underestimated field-obtained results by one-two orders of magnitude. However, it also provided the closest results to laboratory measured values, despite a consistent overestimation by one order of magnitude. Additionally, Goodman
Chapter 5 Proglacial hydrogeology

(1999) has also reported that the Hazen method predicted lower values and was more consistent than other methods which consider sorting, such as Krumbein and Monk (1943). In addition to its reported relative consistency, the Hazen method was also used in this study because of its previous usage in proglacial environments (e.g. Robinson et al., 2008).

In addition to the d_{10}, the Hazen equation also includes an empirical coefficient (C), which is related to sediment grain size and sorting (Brassington, 2007). It has also been suggested that the C parameter is influenced by sediment compaction, with higher Hazen coefficient assigned to looser material (Uma et al., 1989). Although it is usually assumed that the coefficient is equal to 100, a review has shown that cited Hazen coefficients can range between 1 and 1000 (Carrier, 2003). However, values as high as 1300 have also been suggested (Brassington, 2007). The C coefficients which were used in the current study were 350 (lowest value suggested) for fine-grained sediments and 1000 for coarse-grained sediments (Brassington, 2007).

The Alyamani and Sen (A&S) (1993) equation was developed in order to overcome the bias problems associated with PSA equations that only use a single parameter. A&S have suggested that finer particles carry a higher physical impact on hydraulic conductivity, hence, the central tendency chosen in a one parameter equation is usually biased toward fine grain sizes. They also suggested that one parameter fails to fully represent the whole grain-size distribution curve. Therefore, a single parameter does not yield consistent results with respect to actual values of hydraulic conductivity (Alyamani and Sen, 1993). In order to overcome these limitations, they developed an alternative approach, which is based on a portion of the curve, using its slope, intercept and the difference between the d_{50} and d_{10} particles (Equation 5.3) (Alyamani and Sen, 1993).
Chapter 5 Proglacial hydrogeology

\[K = 1300 \left[I_0 + 0.025(d_{50} - d_{10}) \right]^2 \]

K denotes hydraulic conductivity (m/day), \(d_{50}\) and \(d_{10}\) are the grain sizes which are 10% and 50% coarser than the remaining of the sample, respectively. \(I_0\) (mm) is the grain size diameter where the \(d_{10}\) and \(d_{50}\) values intersect the horizontal axis (Figure 5.3).

![Figure 5.3](image)

The \(I_0\) is located where the dotted line crosses the x axis.

The third equation for measuring hydraulic conductivity which was tested in this study has been developed by Puckett et al. (1985) (Equation 5.4).

\[K = \left(4.36 \times 10^{-5} \right) \times e^{(-0.1975 \times \%cl)} \]

Equation 5.4. The Puckett et al. equation (1985)
K is hydraulic conductivity (m/sec) and \(\% cl \) is the percentage of the total sample that is finer than 0.002 mm. The obtained values from this equation were later converted to m/day. This method is specifically designed for sediment with high clay contents. It was chosen due to the high proportion of fine-grained sediment at the Northern Oasis and the eastern lakeshore of the Instrumented Lake.

Sorting was calculated according to Equation 5.5 (Folk, 1986).

\[
\sigma_1 = \Phi_{84} - \Phi_{16} + \frac{\Phi_{95} + \Phi_{5}}{6.6}
\]

Equation 5.5. Calculation of sediment sorting coefficient (after Folk, 1986).

\(\sigma_1 \) is the sorting coefficient and \(\Phi_{84}, \Phi_{16}, \Phi_{95}, \Phi_{5} \) are the phi values at the respective 84, 16, 95, and 5 percentiles. These coefficients are accompanied by a verbal description of the sorting (Table 5.3, Appendix 3).

5.3.3. Constant head permeameter

Hydraulic conductivity for three samples from each hydrogeological environment (Northern Oasis, IL, Southern Oasis lakes, and the Outwash) were tested using a constant head permeameter following British Standard 1377 (1990). Each sample was emplaced in a glass chamber, where water saturated the sample from the top. Pipes connected to manometers were connected above and below the sample, in order to determine the difference in head. However, due to the low availability of samples, the sediment in the chamber was only \(\sim 1 \) cm thick, with gravel filling the rest of the chamber. Water fluxes through the chamber were then measured. These fluxes and head
differences then allowed Darcy’s Law to be used to calculate hydraulic conductivity (Equation 5.6).

\[
K = \frac{\left(\frac{V}{t}\right) \times l}{(h \times A)}
\]

Equation 5.6. Calculation of hydraulic conductivity \((K)\) using constant head permeameter

Where \(K\) is hydraulic conductivity (cm/sec), \(v\) is the volume of water (mL), \(t\) is time (sec), \(l\) is the length of the sample (cm), \(h\) is the difference in head (cm), and \(A\) the cross sectional area (cm\(^2\)). The results were then converted to m/day.

5.4. Results for the determination of hydraulic conductivity

5.4.1. Spatial variability in grain size

30 sediment samples for PSA were collected from the different hydrogeological environments at the Skaftafellsjökull foreland (Figure 5.4, Appendix 2): The Northern Oasis, the Southern Oasis lakes, the outwash, and the Instrumented Lake (IL). The Northern Oasis consists of the area between the two main channels of the Skaftafellsá meltwater river (Figure 5.1). This area contains several large lakes, which are receding (Figure 3.11), and large moraine complexes. It is mainly underlain by poorly sorted sediment, which consist of fine-grained deposits, cobbles, and boulders (Figure 5.2). The Southern Oasis contains five main lakes, located south of the Skaftafellsá meltwater channel (Figure 5.1). These lakes are generally underlain by pebbles and coarse sands. However, some lakeshores are underlain by finer sediments. These lakes support large amount of flora and fauna. The IL is the northernmost lake within the Southern Oasis. It is
located in a depression, and is surrounded by moraines from the north, south and east.

The lakeshores of the IL show a considerable variability in grain size (Tristram et al., 2015). The eastern end is underlain by approximately 0.5 m of fine-grained deposits. The western lakeshore is underlain by similar deposits to those of the outwash, hence, it was included in the outwash. The outwash consists of active and relict glaciofluvial channels, underlain by coarse sand and cobbles deposits, which drained the retreating glacier margin of Skaftafellsjökull (Figure 5.1).

![Figure 5.4. Hydrogeological environments and the locations for PSA samples and slug tests at the Skaftafellsjökull foreland.](image)

PSA samples are denoted by black dots. Piezometers in which slug tests were performed are denoted with white triangles. The box in black dashed lines shows the approximate area of Insert B, which zooms in on the Southern Oasis area. The position of the Skaftafellsá channel has shifted since the image was taken. The position of the channel during the field season (June-August 2012) is denoted by the dashed blue line in B. The image was taken from Vatnajökull National Park, 2007.

The procedures for the PSA are described in section 5.3.2. The PSA results show a high heterogeneity in grain size distribution at the Skaftafellsjökull foreland (Figure 5.5). The
samples from the Northern Oasis and the fine-grained lakeshore of the IL have narrow particle size distributions, which consist of very high proportion of fine grain size (<0.063 mm). This is also illustrated by the narrow difference in particle size (0.060 mm) between their d_{10} (0.001-0.015 mm) and d_{90} (0.063 mm) particles (Table 5.2). Although only five samples were collected from the Northern Oasis, excavations suggest that extensive areas of this area site are underlain by poorly sorted deposits of fine-grained sediment and boulders (till) (Figure 5.2).

In contrast to the fine-grained sediments at the Northern Oasis and the IL, the samples from the Southern Oasis lakes and the outwash were much coarser. For instance, the d_{10} for the Southern Oasis lakes and the outwash are 0.070 mm and 0.30 mm, respectively (Figure 5.5). The coarsest grain size in the Southern Oasis lakes and outwash (~2 mm) are also substantially coarser than those from the IL and Northern Oasis (0.063 mm). Additionally, the range of the particle size distributions for these two environments was much wider (~1.7 mm) than that of the Northern Oasis and the fine-grained lakeshore of the IL (Table 5.2). These differences highlight the high sediment heterogeneity at the Skaftafellsjökull foreland.
Figure 5.5. Cumulative plot of Particle Size Analysis for the different hydrogeological environments at the Skáftafellsjökull foreland.

The horizontal dashed grey lines show the corresponding d_{10}, d_{50}, and d_{90} for each environment. Note that only wet sieving was done on the S. Oasis lakes and Outwash samples, hence the lowest diameter is 0.063 mm. The brackets in the legend show the number of samples in each environment.

Table 5.2. Mean grain size (mm) and standard deviation for the different hydrogeological environments at the Skáftafellsjökull foreland.

The figures are based on the cumulative PSA distribution. The number of samples in each environment is in brackets.

<table>
<thead>
<tr>
<th>Grain size (mm)</th>
<th>d_{10}</th>
<th>d_{50}</th>
<th>d_{90}</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. oasis lakes (8)</td>
<td>0.061±0.045</td>
<td>0.311±0.169</td>
<td>1.202±0.558</td>
</tr>
<tr>
<td>N. Oasis (5)</td>
<td>0.001±0.001</td>
<td>0.016±0.018</td>
<td>0.081±0.088</td>
</tr>
<tr>
<td>IL (6)</td>
<td>0.004±0.001</td>
<td>0.022±0.001</td>
<td>0.063±0.009</td>
</tr>
<tr>
<td>Outwash (11)</td>
<td>0.190±0.127</td>
<td>0.834±0.322</td>
<td>1.720±0.236</td>
</tr>
</tbody>
</table>

Sorting was calculated from the PSA results following the method of Folk (1986) (Equation 5.5). The results for the sorting showed that all samples were between very well sorted to moderately well sorted (Table 5.3). The samples with high proportion of fine particles (Northern Oasis and the IL) were very well sorted. However, it is important to note that the values from the Northern Oasis did not include large clasts, which are prevalent in this till-
dominated environment. Based on individual samples and the standard deviation, the highest variability in sorting was found in the Southern Oasis lakes (Table 5.3).

Table 5.3. Mean sorting coefficients and standard deviation in different hydrogeological environments at the Skaftafellsjökull foreland.

<table>
<thead>
<tr>
<th>Spatial variability in sorting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogeological environment</td>
</tr>
<tr>
<td>N. Oasis</td>
</tr>
<tr>
<td>S. Oasis lakes</td>
</tr>
<tr>
<td>Fine-grained lakeshore of the IL</td>
</tr>
<tr>
<td>Outwash</td>
</tr>
</tbody>
</table>

5.4.2. Comparison of hydraulic conductivity between the PSA equations

The comparison of hydraulic conductivity estimations which were obtained from the three PSA equations and the slug tests is presented in Figure 5.6 and Table 5.4. The Alyamani and Sen (A&S) method obtained the highest mean hydraulic conductivity values (4.47x10^2 m/day) and highest standard deviation (6.86x10^2 m/day), which exceeded the other methods by one to two orders of magnitude. The Puckett method had the lowest mean and standard deviation (1.29x10^0±1.28 m/day), which were one and two orders of magnitude lower than those obtained from the Hazen and A&S equations, respectively. The mean and standard deviation for the Hazen method and the slug tests were within the same order of magnitude (2.0x10^1 m/day).
Chapter 5

Proglacial hydrogeology

Table 5.4. Mean and standard deviation of hydraulic conductivity from the different methods. The full data set is found in Appendix 4.

<table>
<thead>
<tr>
<th>Method</th>
<th>Mean hydraulic conductivity (m/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazen (30)</td>
<td>20.05±38.23</td>
</tr>
<tr>
<td>Puckett (18)</td>
<td>1.29±1.28</td>
</tr>
<tr>
<td>A&S (30)</td>
<td>447.36±686.79</td>
</tr>
<tr>
<td>Slug tests (18)</td>
<td>19.26±19.64</td>
</tr>
<tr>
<td>Constant head permeameter (12)</td>
<td>11.15±5.89</td>
</tr>
</tbody>
</table>

The results for all the PSA samples and the falling head tests are presented in Figure 5.6. This shows that both the A&S and Hazen results had very high variability, which ranged over six and seven orders of magnitude, respectively. The slug tests and Puckett estimations ranged over three and four orders of magnitude, respectively. Conversely, the results from the permeameter testing only varied over two orders of magnitude (Figure 5.6). The slug tests had the highest minimum value (8.65 x 10⁻² m/day), which exceeds the lowest minimum value estimated by the Hazen equation (1.14x10⁻⁴ m/day) by two orders of magnitude. The high minimum values obtained by the slug tests are probably explained by the coarse-grained substrates underlain by the piezometers in which slug tests were performed (Figure 5.4). The minimum Puckett and A&S estimations were within the same order of magnitude (1x10⁻² m/day).
Figure 5.6. Hydraulic conductivity estimations from the three PSA equations and slug tests. This figure contains all samples. Please note the logarithmic scale. The results from the permeameter tests only varied over two orders of magnitude and, due to the logarithmic scale of the figure, have been omitted for clarity. The numbers of samples for each method are in brackets. The numbers above the box plots denote the mean and standard deviation of each method (m/day).

The hydraulic conductivity values that were obtained from all of the samples are presented in Figure 5.6. However, some samples were not analysed by the Puckett method and slug tests. These omissions were due to the limited amount of piezometers where pressure transducers fit (slug tests) and to the very small proportion of sediment <2 µm (Puckett method) in some environments, particularly in the outwash and Southern Oasis lakes. Therefore, in order to overcome this methodological challenge, and perform a more direct comparison, the results from samples where all three PSA methods were used (“direct comparison”) are presented in Figure 5.7.

Similar to the results from all the samples (Figure 5.6), the direct comparisons between the methods also suggest a high variability in hydraulic conductivity between the different methods (Figure 5.7). The hydraulic conductivity values obtained from the direct comparison samples stretched over 3-6 orders of magnitude. The Puckett method had the
Chapter 5 Proglacial hydrogeology

lowest mean and standard deviation \((1.29 \times 10^0 \text{ m/day})\), which were one and two orders of magnitude below those of Hazen and A&S, respectively. The mean hydraulic conductivity of each equation for the direct comparison (Figure 5.7) was within the same order of magnitude as that of the total number of samples (Figure 5.6).

![Box plot comparing hydraulic conductivities](image)

Figure 5.7. Direct comparison of hydraulic conductivity (m/day) for the three PSA equations.

The numbers of samples for each method are in brackets. The numbers above the box plots denote the mean and standard deviation (m/day). Note the logarithmic scale.

5.4.3. **Slug tests**

Hydraulic conductivity estimations from the slug tests spanned over three orders of magnitude \((1.12 \times 10^{-1} - 4.02 \times 10^{1} \text{ m/day})\) (Figure 5.6). The lowest hydraulic conductivity was estimated at GW8 \((1.12 \times 10^{-1} \text{ m/day})\), located in relatively fine-grained deposits near the IL. These estimates were very close to the Hazen PSA estimations from this area \((1.00 \times 10^{-1} \text{ m/day})\). The relatively low hydraulic conductivity in this area is due to the high proportion of fine-grained deposits in this location, which gets periodically inundated by lake water. These inundations probably increase the deposition of fine-grained sediment, which reduce the hydraulic conductivity.
Chapter 5 Proglacial hydrogeology

The hydraulic conductivity in the transect varied around two orders of magnitude (1x10^0-1x10^1 m/day). The slug tests have shown that hydraulic conductivity increased away from the river, with the highest values estimated at T3 [Figure 5.4] (4.02x10^1 m/day). Hydraulic conductivity at the closest borehole to the river (T1) was an order of magnitude lower than at T3 (4.70x10^0 m/day). These values and spatial patterns are similar to those reported from other proglacial settings (e.g. Cooper et al., 2002; Magnusson et al., 2014). For instance, the hydraulic conductivity of the well located next to a meltwater channel in Svalbard was estimated at 3.81x10^0, and it increased with distance away from the channel (Cooper et al., 2002). Similar results were also reported from the forefield of the Damma Gletscher (Swiss Alps), where slug tests estimated hydraulic conductivity to vary between 5.4x10^0 – 4.23x10^1 m/day (Magnusson et al., 2014).

GW11 and GW12 are located between two moraines, in an area underlain by coarse glaciofluvial deposits and relict channels (Figure 5.1). The substrate where these piezometers are located is similar to that of the transect, albeit being located further from the river. The hydraulic conductivity at GW11 and GW12 was very similar (1.5x10^1 m/day). These results are also within the same order of magnitude as the hydraulic conductivity of T3, located in a coarse-grained substrate near the IL. The hydraulic conductivity at GW5, located in coarse-grained glaciofluvial deposits 38 m away from the Skaftafellsá, was 1.51x10^0 m/day. Although this was the lowest hydraulic conductivity in the outwash, these results are within the same order of magnitude as the estimated hydraulic conductivity for T1 and T2 (Table 5.5). Additionally, the results of the slug test for T3 were within the same order of magnitude as the mean Hazen hydraulic conductivity for the outwash. In summary, the results of the slug tests were generally within the same order of magnitude as those obtained from the Hazen equation.
Table 5.5. Mean hydraulic conductivity and standard deviation for the slug tests.

The brackets denote the number of samples. The table also presents comparison of PSA results from areas which were near the piezometers where slug tests were performed.

<table>
<thead>
<tr>
<th>Borehole</th>
<th>Mean slug test hydraulic conductivity (m/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW8 (2) (relatively fine-grained lacustrine deposits)</td>
<td>0.11±0.04</td>
</tr>
<tr>
<td>GW5 (2) (glaciofluvial deposits)</td>
<td>1.51±0.3</td>
</tr>
<tr>
<td>GW11 (1) (glaciofluvial deposits)</td>
<td>15.72</td>
</tr>
<tr>
<td>GW12 (1) (glaciofluvial deposits)</td>
<td>14.42</td>
</tr>
<tr>
<td>T1 (3) (glaciofluvial deposits)</td>
<td>4.70±0.4</td>
</tr>
<tr>
<td>T2 (2) (glaciofluvial deposits)</td>
<td>9.06±4.7</td>
</tr>
<tr>
<td>T3 (7) (glaciofluvial deposits)</td>
<td>40.16±14.3</td>
</tr>
</tbody>
</table>

Hydraulic conductivity estimations from the permeameter ranged between 4.97×10^0 and 2.45×10^1 m/day. The mean K estimations from the permeameter was $1.15 \times 10^1 \pm 5.89$ m/day, which lies within the same order of magnitude of the slug tests and Hazen estimations (Table 5.5). However, in contrast to the PSA, where substantial differences between the hydrogeological environments were observed, the results of the permeameter only stretched over two orders of magnitude (Figure 5.8).

5.4.4. Constant head permeameter

Hydraulic conductivity estimations from the permeameter ranged between 4.97×10^0 and 2.45×10^1 m/day. The mean K estimations from the permeameter was $1.15 \times 10^1 \pm 5.89$ m/day, which lies within the same order of magnitude of the slug tests and Hazen estimations (Table 5.5). However, in contrast to the PSA, where substantial differences between the hydrogeological environments were observed, the results of the permeameter only stretched over two orders of magnitude (Figure 5.8).
Figure 5.8. Hydraulic conductivity estimates (m/day) obtained from constant head permeameter laboratory tests.

The numbers above the box plots denote the mean and standard deviation of each method (m/day). Both sand and clay contained 6 samples.

5.4.5. **Choice of preferred method for estimating hydraulic conductivity**

The direct comparisons of the results shows that the mean hydraulic conductivity for the Puckett and A&S equations were generally the lowest and highest, respectively. The Hazen estimations were in the middle, with mean hydraulic conductivity an order of magnitude higher and lower than the Puckett and A&S estimations, respectively (Figure 5.7). The estimations of hydraulic conductivity from the slug tests and permeameter were generally closest to the Hazen estimations (Table 5.5). However, the slug tests were only conducted in relatively coarse-grained areas. Conversely, the results from the Puckett and A&S were generally at least an order of magnitude lower and higher, respectively (Table 5.4). When choosing the most appropriate method for the estimation of hydraulic conductivity, the main limitation of the A&S equation was its high estimations and
variability (Figure 5.6). The main limitation of the Puckett method is its unsuitability for
areas containing low proportion of fine-grained sediments. The main limitation of the slug
tests was its limited spatial coverage. Although the permeameter included samples from
all hydrogeological environments, the differences between the different environments
were small, failing to capture the expected heterogeneity in hydraulic conductivity of
proglacial sediments that has been displayed by the PSA (Figure 5.6). It is suggested that
this is due to limitations with the method, such as the need to emplace the sample on top
of gravel layers, which leads to preferential flow paths, which increase the flow. In light of
these limitations, it was therefore decided to use the hydraulic conductivity estimations
which were obtained from the Hazen equation due to its past usage in similar
environments (e.g. Robinson et al., 2008) and its nearest agreement to the falling-head
tests.

5.5. **Spatial variability in hydraulic conductivity at the Skaftafellsjökull foreland**

This section describes the spatial variability in hydraulic conductivity at the
Skaftafellsjökull foreland. These results are based on the Hazen PSA estimations of
hydraulic conductivity. Similar to other studies from proglacial environments (e.g.
Robinson et al., 2008; Bajc et al., 2014), the hydraulic conductivity at the Skaftafellsjökull
margin has also shown wide spatial variability.

The hydraulic conductivity estimations at the Skaftafellsjökull foreland varied over seven
orders of magnitude (1x10^{-4} – 1x10^{2} m/day), with large differences between the Northern
and Southern Oasis (Figure 5.9). The lowest hydraulic conductivity was estimated in
areas underlain by high proportion of fine-grained sediment such as the Northern Oasis
lakes and the eastern lakeshore of the IL (Figure 5.9). The lowest mean hydraulic
conductivity was measured in the Northern Oasis (approximately 7.28x10^{-3} m/day). These
estimations were two orders of magnitude lower than the mean hydraulic conductivity for
the fine-grained lakeshore of the IL. The Northern Oasis also had the smallest variability in hydraulic conductivity.

![Map of hydraulic conductivity at Skaftafellsjökull foreland](image)

Figure 5.9. The spatial distribution in hydraulic conductivity (m/day) at the Skaftafellsjökull foreland.

Note the logarithmic scale. These results are based on the results from the Hazen equation. The hydraulic conductivity of the Southern Oasis (dashed box) is shown in more detail within the black box. The position of the Skaftafellsá channel has shifted since the image was taken. The position of the channel during the field season (June-August 2012) is denoted by the blue dashed line. The image was taken from Vatnajökull National Park, 2007.

The hydraulic conductivity estimations from the IL (7.28x10^{-3} m/day) and the Northern Oasis (3.79x10^{-4} m/day) exceeded the values suggested by Brassington (2007) for glacial clay by one and two orders of magnitude, respectively (Figure 5.9). Slug tests estimated that the hydraulic conductivity of till from the Burroughs Glacier in Alaska to be around 1x10^{-2} m/day (Simpkins and Mickleson, 1990). However, these samples contained a high proportion of sand, which probably explains the hydraulic conductivity estimations being one-two orders of magnitude higher than those measured in the Skaftafellsjökull foreland. In contrast to the relatively high hydraulic conductivity of till reported from the Burroughs...
Glacier, the hydraulic conductivity of clay-rich Quaternary glacial till deposits from East Anglia (3.46×10^{-4}-4.23×10^{-6} m/day) were lower than those from the Skaftafellsjökull foreland (Hiscock and Tabatabi Najafi, 2011). Observations of glacial till from Shropshire were also lower than those from the Skaftafellsjökull foreland, with median hydraulic conductivity of approximately 1.73×10^{-5} m/day (Cuthbert et al., 2010). These estimates are between one and three orders of magnitude lower than the estimations from the IL and up to two orders of magnitude lower than the Northern Oasis (Figure 5.9).

The hydraulic conductivity of till can vary over a very wide range, typically between 8.64×10^{-3}-8.64×10^{3} m/day (Freeze and Cherry, 1979). Another summary has estimated an even higher variability, where hydraulic conductivity ranges between 6.91×10^{-7}-1.73×10^{3} m/day (Piotrowski, 2007). The hydraulic conductivity of the IL is ranked at either the lower end of the ranges suggested by Freeze and Cherry (1979) or at the lower-mid range for that of Piotrowski (2007). The Northern Oasis estimations are an order of magnitude lower than the till estimates of Freeze and Cherry’s (1979) range and at the low-mid range of Piotrowski (2007). However, the low hydraulic conductivity of till from the Skaftafellsjökull foreland can be possibly attributed to its relatively young age, in which the impact of secondary processes (such as oxidation) is lower (e.g. Hiscock and Tabatabi Najafi, 2011). These low hydraulic conductivity estimations and observations from the Northern Oasis (Figure 5.2) suggest that it is underlain by fine-grained sediments of low hydraulic conductivity. Furthermore, it is hypothesised that these lakes are perched above the regional groundwater system.

The (geometric) mean hydraulic conductivity in the Southern Oasis is 1.21×10^{0} m/day. The variability of hydraulic conductivity in the Southern Oasis ranges over seven orders of magnitude (Figure 5.9). This high variability in hydraulic conductivity can be illustrated at the IL, where hydraulic conductivity varied over five orders of magnitude (3.9×10^{-3}-9.26×10^{1} m/day). However, intermediate hydraulic conductivities were estimated at GW8 and L8. These locations have relatively high proportions of silt-sized sediment, which
possibly originated from temporary inundation by the lake. The hydraulic conductivity of lakeshores in the Southern Oasis are generally in the range of 1.00×10^0 to 1.00×10^1 m/day. These areas are situated further away from the Skaftafellsá, and are also surrounded by moraines, which possibly shelter them from diurnal and seasonal fluctuations in meltwater discharge, which control sediment entrainment and deposition. K estimations for the Southern Oasis lakes were within the same order of magnitude as those for moraine lake basins from Skeiðarársandur [Table 5.6] (Robinson et al., 2008).

The highest hydraulic conductivity at the Skaftafellsjökull foreland was estimated at the outwash areas, where hydraulic conductivity ranged between 1×10^1-1×10^2 m/day. The mean hydraulic conductivity for the outwash was 1.76×10^1 m/day (Table 5.6). This environment is mainly underlain by active and relict braided glaciofluvial channels, where the coarsest grain sizes (mean d_{10} of 0.19 mm) were measured (Figure 5.5). The estimates of hydraulic conductivity from the outwash are within the same order of magnitude for glacial sands and gravels (Brassington, 2007). These estimates are also very close to estimates from the outwash areas of Skeiðarársandur (4.50×10^1 m/day) and are within the same order of magnitude as the hydraulic conductivity of proglacial channels at Skeiðarársandur (2.80×10^1 m/day) (Robinson et al., 2008). The hydraulic conductivity at the forefield of the Damma Gletscher forefield in Switzerland (Magnusson et al., 2014) is also within the same orders of magnitude as the current study (Table 5.6). Conversely, the hydraulic conductivity estimations of most samples from the Skaftafellsjökull outwash are higher by an order of magnitude than those of sandur deposits from Svalbard (5.19×10^0 m/day) (Cooper et al., 2002; 2011).

In summary, this section described the spatial variability in hydraulic conductivity at the different hydrogeological environments of the Skaftafellsjökull foreland. The results illustrate the high heterogeneity of hydraulic conductivity at the Skaftafellsjökull foreland, which was observed even on small spatial scales (e.g. between the lakeshores of the IL). These observations support previous studies which highlighted the high heterogeneity of
glacial deposits (e.g. Anderson, 1989; Bajc et al., 2014). This high variability also reiterates the importance of the sampling location and methodology for the determination of hydraulic conductivity (e.g. Ronayne et al., 2012). The estimations of hydraulic conductivity for the fine-grained areas from this site were either within the middle to low position in the range suggested by Piotrowski (2007) or slightly lower than the range suggested by Freeze and Cherry (1979). The hydraulic conductivity estimations for coarse-grained locations at the Skaftafellsjökull foreland are within the same order of magnitude as those reported from Skeiðarársandur (Robinson et al., 2008), the Swiss Alps (Magnusson et al., 2014) and the values suggested by Brassington (2007) [Table 5.6].

Table 5.6. Comparison of hydraulic conductivity from glaciated and deglaciated catchments

<table>
<thead>
<tr>
<th>Study</th>
<th>Hydraulic conductivity (m/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skaftafellsjökull foreland (geometric mean)</td>
<td></td>
</tr>
<tr>
<td>N. Oasis (5)</td>
<td>0.00038±0.001</td>
</tr>
<tr>
<td>S. Oasis lakes (8)</td>
<td>1.42±2.54</td>
</tr>
<tr>
<td>IL (6)</td>
<td>0.0073±0.01</td>
</tr>
<tr>
<td>Outwash (11)</td>
<td>17.57±50.56</td>
</tr>
<tr>
<td>Total Southern Oasis (25)</td>
<td>1.21±40.62</td>
</tr>
<tr>
<td>Brassington (2007)</td>
<td></td>
</tr>
<tr>
<td>Glacial sands and gravel</td>
<td>10-100s</td>
</tr>
<tr>
<td>Glacial clay, till and varved clay</td>
<td>0.864</td>
</tr>
<tr>
<td>Skeiðarársandur (Robinson et al., 2008)</td>
<td></td>
</tr>
<tr>
<td>Moraines</td>
<td>11.6 (combined)</td>
</tr>
<tr>
<td>Moraine relief</td>
<td>14.2</td>
</tr>
<tr>
<td>Moraine seeps</td>
<td>7.1</td>
</tr>
<tr>
<td>Moraine lake basins</td>
<td>16.8</td>
</tr>
<tr>
<td>Proglacial basin, inundated by 1996 jökulhlaup, >0.5 km from the margin</td>
<td>33.9</td>
</tr>
<tr>
<td>Proglacial river channels</td>
<td>26.6</td>
</tr>
<tr>
<td>Svalbard (Cooper et al., 2002; 2011)</td>
<td></td>
</tr>
<tr>
<td>Well 1, sandur fluval sed. Fine and silt on channel floodplain, 5 m from channel</td>
<td>3.81</td>
</tr>
<tr>
<td>Well 3, poorly sorted gravelly sand moraine, 118m from channel</td>
<td>38.02</td>
</tr>
<tr>
<td>Sandur sediment</td>
<td>5.19</td>
</tr>
<tr>
<td>Moraine complex sediment</td>
<td>35.25</td>
</tr>
<tr>
<td>Burroughs Glacier, Alaska (Simpkins and Mickleson (1990) Till. 57% sand, 36% silt, 7% clay</td>
<td>0.086</td>
</tr>
<tr>
<td>Clay rich Quaternary deposits, East Anglia (Hiscock and Najafi, 2011)</td>
<td>3.46X10⁻⁴-4.23x10⁻⁵ m/day 1.73x10⁻⁵</td>
</tr>
<tr>
<td>Damma Gletscher forefield (Swiss Alps) (Magnusson et al., 2014) Alpine proglacial channel, generally coarse (sand-cobbles)</td>
<td>5.4-42.3 m/day</td>
</tr>
<tr>
<td>Proglacial moraine material, Canadian Rockies (Langston et al., 2013)</td>
<td>(8.64x10⁻⁷)</td>
</tr>
</tbody>
</table>
5.6. Calculations of hydrogeological parameters for the Skaftafellsjökull foreland aquifer

5.6.1. Equations for the calculations of aquifer parameters

This section builds on the results from previous sections and other studies to calculate the aquifer volume, groundwater discharge, and groundwater velocity of the Skaftafellsjökull foreland aquifer. These parameters are important for understanding the regional proglacial groundwater flow systems.

Groundwater discharge is governed by Darcy’s (1856) Law (Equation 5.7):

\[Q = KA \left(\frac{dh}{dl} \right) \]

Equation 5.7. The calculation of groundwater discharge fluxes (Darcy, 1856).

Where \(Q \) denotes groundwater flow flux (m³/day), \(K \) is the hydraulic conductivity (m/day), \(A \) the flow cross-sectional area (m²), and \(dh/dl \) (unitless) the hydraulic gradient (Darcy, 1856).

Matrix properties are fundamentally important in determining groundwater flow. Porosity is the void space within the matrix, and is expressed as a percentage of the void volume over the total volume. Porosity is affected by both the initial depositional environment and secondary processes such as compaction, fracturing, and dissolution. Effective porosity is a key hydrogeological parameter, which describes the percentage of pores that are interconnected. Permeability describes the ease with which fluid can flow through a porous substrate. When fluid transport is considered, effective porosity serves as a better surrogate for permeability than total porosity (Domenico and Schwartz, 1998).
Groundwater flow equations usually address permeability by the hydraulic conductivity term, which is a function of both fluid properties (such as density and viscosity) and the substrate permeability. The \(\frac{dh}{dl} \) term (Equation 5.7) is the difference in hydraulic head over a distance, also known as the hydraulic gradient. The hydraulic gradient is derived from the total head \(dh \) (the sum of elevation head, pressure head and velocity head) over the distance between the measuring points \(dl \).

The calculations of aquifer key parameters (objective 3) such as aquifer groundwater discharge (Equation 5.7), the volume of water in the aquifer (Equation 5.8), and groundwater velocity (Equation 5.9) can be made when the hydraulic conductivity, hydraulic gradient, porosity and aquifer dimensions are known or well estimated. The volume of groundwater within the aquifer is calculated by Equation 5.8:

\[
V = T \times W \times L \times S
\]

Equation 5.8. Calculation of aquifer volume

\(V \) is the volume of groundwater in the aquifer \((m^3) \), \(T \) is aquifer thickness \((m) \), \(W \) is aquifer width \((m) \), \(L \) is aquifer length \((m) \), and \(S \) is the specific yield \((%) \), which is the amount of water that is drained from the aquifer in response to a drop in the groundwater table (e.g. Freeze and Cherry, 1979). Groundwater velocity is calculated by Equation 5.9:

\[
\nu = \left(\frac{K}{h} \frac{1}{\alpha l} \right)
\]

Equation 5.9. Calculation of groundwater velocity.
Where \(v \) is groundwater velocity (m/day), \(K \) is hydraulic conductivity (m/day), \(\alpha \) is effective porosity (\%) and \(dh/dl \) is the hydraulic gradient (unitless).

5.6.2. Choice of input parameters for the calculation of aquifer properties

This section describes the rationale for choosing the input parameter for the calculations of hydraulic conductivity, hydraulic gradient, and aquifer thickness of the Skaftafellsjökull foreland (Equations 5.6-5.8). The chosen parameters for Equations 5.7-5.9 are summarised in Table 5.7. The chosen hydraulic conductivity (\(K \)) inputs were the mean Hazen from the Southern Oasis. In order to account for the variability of hydrogeological parameters at the site, all measurements from the Southern Oasis were used (outwash, lakes and IL), including those from the areas underlain by fine-grained areas (Figure 5.9). The calculations using Darcy’s Law also assumed that the aquifer is isotropic and homogenous (Freeze and Cherry, 1979).

The difference in hydraulic head (\(dh \)) was mapped from the patterns of groundwater horizontal flow at the site, with groundwater flowing from high to low hydraulic heads. Similar to other proglacial environments (e.g. Bahr, 1997; Robinson *et al.*, 2008), the regional groundwater flow at the Skaftafellsjökull foreland also flows away from the margin. Hence, groundwater generally flows from north to south. Additionally, a local groundwater system has been identified at the transect, between the River Skaftafellsá and the IL (Figure 5.1). The detailed description of groundwater levels and flow paths are given in Chapter 7. Having measurements of hydraulic head from near the glacier margin would have provided a better understanding of the hydraulic gradient at the site. However, this was not possible due to the difficulties in installing piezometers closer to the glacier.
Chapter 5 Proglacial hydrogeology

margin. Therefore, considering the north-south direction of the regional groundwater flow, the head difference \((dh)\) component of the hydraulic gradient \((dh/dl)\) was the mean difference in heads between the most northerly (GW10) and most southerly piezometers (GW8). The distance between these piezometers \((dh)\) is 150 m (Figure 3.18).

The estimation of aquifer thickness is one of the key parameters for calculating groundwater fluxes (Equation 5.7) and aquifer volumes (Equation 5.8) (e.g. Domenico and Schwartz, 1998). However, this study did not benefit from measurements of aquifer thickness which have been obtained from seismic geophysics (Guðmundsson et al., 2002; Robinson et al., 2008) or active layer depth in aquifers underlain by permafrost (Cooper et al., 2002; 2011). Previous geophysical measurements from the areas near the snouts of Skeiðarársandur and Svínafellsjökull suggested sediment depths of approximately 70-80 m. Sediment depths then increase with distance from the margin, reaching between 200-250 m at the coast (Guðmundsson et al., 2002). Other estimates from Svínafellsjökull also suggested similar depths to bedrock (Ó Dochartaigh, 2012, personal communication). Seismic data suggested that sediment depths to the southwest of the Skaftafellsjökull foreland, close to the Skeiðará bridge (Figure 3.2), are approximately 160-200 m (Guðmundsson et al., 2002). However, this location is further away from the glacier margin than the current field site, hence, these reported depths are possibly thicker. As the Skaftafellsjökull proglacial area is substantially smaller than Skeiðarársandur, and is not underlain by thick jökulhlaup deposits, it is assumed that the depth to bedrock at the Skaftafellsjökull foreland will be shallower. Since the geomorphic setting of Svínafellsjökull is similar to that of Skaftafellsjökull, it was decided to use 75 m for the aquifer thickness, as it is the middle value between the approximations of sediment depths reported from near the margin of Svínafellsjökull (Guðmundsson et al., 2002). The specific yield and porosity values for the current calculations were the same as used for Skeiðarársandur (Bahr, 1997; Robinson, 2003). These values were chosen because the hydraulic
conductivity at the Skaftafellsjökull foreland and Skeiðarársandur was within the same order of magnitude (Table 5.6).

Table 5.7. Chosen parameters for the calculation of the hydrogeological properties of the Skaftafellsjökull foreland aquifer.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>source</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>Mean(geometric) hydraulic conductivity (m/day)</td>
<td>1.211</td>
<td>This study</td>
</tr>
<tr>
<td>W</td>
<td>Aquifer width (m)</td>
<td>1300</td>
<td>This study</td>
</tr>
<tr>
<td>L</td>
<td>Aquifer length (m)</td>
<td>2500</td>
<td>This study</td>
</tr>
<tr>
<td>T</td>
<td>Aquifer thickness (m)</td>
<td>75</td>
<td>This study</td>
</tr>
<tr>
<td>A</td>
<td>Cross sectional area [length x depth] (m²)</td>
<td>97500</td>
<td>This study</td>
</tr>
<tr>
<td>h</td>
<td>Mean head difference (unitless)</td>
<td>0.544</td>
<td>This study</td>
</tr>
<tr>
<td>l</td>
<td>Length of head difference (m)</td>
<td>150</td>
<td>This study</td>
</tr>
<tr>
<td>S</td>
<td>Specific yield (%)</td>
<td>25</td>
<td>Brassington (2007)</td>
</tr>
<tr>
<td>α</td>
<td>Effective porosity (%)</td>
<td>45</td>
<td>Bahr (1997)</td>
</tr>
</tbody>
</table>

5.6.3. Aquifer parameters of the Skaftafellsjökull foreland

The results for the calculations of hydrogeological parameters are provided in Table 5.8. Groundwater velocity for the Southern Oasis (0.033 m/day) was an order of magnitude lower than that of Skeiðarársandur (0.21 m/day; Robinson, 2003). The groundwater discharge for the Skaftafellsjökull foreland (0.0496 m³/sec) was an order of magnitude lower than that calculated for Hoffelsandur, SE Iceland (Hjulström, 1955). Groundwater discharge estimates for Skeiðarársandur (3.7 m³/sec; Robinson, 2003) exceeded that of those from the current study by three orders of magnitude. The hydraulic conductivity used for Skeiðarársandur was within the same order of magnitude as this study. However, the aquifer volume for the Skaftafellsjökull foreland was three orders of magnitude lower than that of Skeiðarársandur (2.3x10¹⁰ m³; Robinson, 2003) (Table 5.8). The lower
estimations for the Skaftafellsjökull foreland are due to its substantially smaller aquifer size and narrower sediment layers, which are mainly due to the lack of jökulhlaups and the smaller sandur area. With regards to the contribution of groundwater discharge to catchment water balance, measurements from Skeiðarársandur suggest that the discharge of the glacial melt rivers (Churski, 1973) exceed the groundwater discharge by two orders of magnitude (Robinson, 2003). Small groundwater contributions to catchment water balance have also been reported from a sandur in Svalbard, where calculated subsurface fluxes accounted for only around 1% (11 mm) of the total annual water flux (Cooper et al., 2011). However, this catchment is underlain by permafrost, which substantially reduces the aquifer thickness and hydraulic conductivity, which subsequently reduces aquifer volume (Equation 5.8) and groundwater discharge (Equation 5.7).

The main sources of uncertainty in these calculations are those associated with the determination of hydraulic conductivity and the estimation of aquifer thickness and specific yield at the Skaftafellsjökull foreland site. Due to these uncertainties, and the high spatial heterogeneity which was found at the Skaftafellsjökull foreland, the obtained groundwater discharge, velocity, and aquifer volume (Table 5.8) can only remain as plausible estimations.

Table 5.8. Calculated aquifer parameters for the Southern Oasis.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional groundwater discharge (Q)</td>
<td>4.28×10^5 m³/day = 4.96×10^{-3} m³/sec = 1.56×10^5 m³/annum</td>
</tr>
<tr>
<td>Volume of water stored in aquifer (V)</td>
<td>6.09×10^7 m³</td>
</tr>
<tr>
<td>Regional velocity (arithmetic)</td>
<td>0.033 m/day</td>
</tr>
</tbody>
</table>
5.7 Chapter conclusions

This chapter provided a hydrogeological framework for the Skaftafellsjökull foreland field site (objective ii). This framework was based on both field and laboratory measurements and an evaluation of the relict and active depositional environments which impact the site. The hydraulic conductivity at the site was estimated from field (slug tests) and laboratory (PSA equations) techniques. The results suggested high variability in estimated values, with Hazen’s equation generally providing the lowest and least varied estimations. The results of the slug tests and permeameter were generally within the same order of magnitude as the Hazen estimations for coarse-grained samples. However, the permeameter failed to capture the substantial differences in hydraulic conductivity between the fine and coarse-grained samples. Due to these limitations, the Hazen results were chosen for the estimation of hydraulic conductivity.

This study highlighted the high spatial heterogeneity in the hydrogeology of the Skaftafellsjökull foreland, with hydraulic conductivity ranging over seven orders of magnitude. This variability was especially pronounced between the Northern and Southern Oasis areas. The Northern Oasis is underlain by layers of fine-grained deposits, with low hydraulic conductivity (~1×10^{-4} m/d). Conversely, the Southern Oasis is much more heterogeneous, and contains areas of fine and coarse-grained sediments. The mean hydraulic conductivity for the Southern Oasis was 1.21×10^0 m/d. The outwash area had the highest hydraulic conductivity, impacted by the entrainment and deposition of coarse-grained sediment in the relict and active meltwater channels. However, areas of low hydraulic conductivity were also observed in the Southern Oasis, particularly around the IL. The calculated hydraulic conductivity reported in this chapter is generally similar to that reported from Skeiðarársandur and the Swiss Alps.
The groundwater discharge, velocity, and aquifer volume were lower than Skeiðarársandur (Robinson et al., 2008). However, despite the lower groundwater discharge and smaller aquifer at Skaftafellsjökull, the aquifer does store and transports substantial amount of groundwater. Understanding these hydrogeological parameters is important for the understanding of regional groundwater systems and dynamics, geochemical fluxes and groundwater-surface water exchange processes. The hydrogeological framework provided in this chapter provides a foundation for the understanding of groundwater dynamics and groundwater exchange with meltwater (objective iv) and lakes (objective v).
6. The Geochemistry and isotopic (δH and δ¹⁸O) composition of groundwater and surface water at the Skaftafellsjökull foreland

6.1. Introduction

This chapter describes the spatial and temporal variability in groundwater and surface water quality (sections 6.3 and 6.4) and stable isotope (δD and δ¹⁸O) composition (section 6.5) at the Skaftafellsjökull foreland. Groundwater and surface water quality and isotopic composition are usually substantially different within catchments which are dominated by snow and icemelt (e.g. Robinson et al., 2009a, b). These differences have been previously used to investigate the configuration and seasonal evolution of the subglacial drainage system (e.g. Collins, 1978; Sharp, 1991; Tranter et al., 1993; 1996; Brown, 2002; Hindshaw et al., 2011), sources of groundwater recharge (e.g. Roy and Hayashi, 2008; 2009; Robinson et al., 2009b), hydrological pathways (Boucher and Carey, 2010; Dragon and Marciniak, 2010; Carey et al., 2013; Marciniak et al., 2014), quantifying proglacial weathering, and identifying solute sources (Tranter et al., 1993; 1997 Fairchild et al., 1999a, b; Wadham et al., 2001; Pogge van Strandmann et al., 2006; 2008; Wimpenny et al., 2010, 2011). Water geochemistry and stable isotopes were also used to assess the impacts of climate change and glacier retreat on groundwater and surface water quality in regions dominated by ice and snow melt (Dragon and Marciniak, 2010; Fortner et al., 2011; Okkonen and Kløve, 2012), and to investigate proglacial groundwater-surface water exchange (e.g. Ward et al., 1999; Brown et al., 2007a; Roy and Hayashi, 2008; 2009; Gooseff et al., 2013). Water quality and isotopic composition were therefore employed in this study in order to investigate the hydrological exchange between groundwater and
meltwater (objective iv) and groundwater and lakes (objective v) at the Skaftafellsjökull foreland. Water stable isotopes were used in this study to investigate the sources of recharge for groundwater and surface water at the Skaftafellsjökull foreland (objective iii).

6.1.1. The mechanisms of proglacial geochemical weathering

Glaciated catchments have high rates of chemical denudation, which are maintained by the rapid flow and large supply of meltwater, ample supply of fine-grained reactive material, and reactive mineral surfaces (Tranter, 1982; Tranter et al., 1993; Wadham et al., 2001; Cooper et al., 2002; Wolff-Boenisch et al., 2009; Wimpannny et al., 2010). These high rates are maintained despite the generally low temperatures, short residence time of liquid water and thin vegetation and soil cover commonly found in glaciated catchments (Tranter, 1982; Wongfun et al., 2013). The input of solutes from the chemical weathering of rock material into the proglacial zone leads to a sharp enrichment in solute fluxes over relatively short distances (e.g. Brown, 2002; Hindshaw et al., 2011). For instance, observations from Finsterwalderbreen, SW Svalbard, have reported a 30-47% increase in solute fluxes between the glacier margin and the catchment outlet, a distance of approximately 2.5 km (Wadham et al., 2001). Meltwater chemistry is dominated by low water contact times and highly incongruent weathering, which involves the formation of alteration products (Wadham et al., 2001; Cooper et al., 2002; Robinson et al., 2009b). The main cations in meltwaters are Ca$^{2+}$, Na$^+$, Mg$^{2+}$, and K$^+$. The main anions are SO$_4^{2-}$ and HCO$_3^-$ (e.g. Tranter et al., 1993). Meltwater solute concentrations are generally substantially lower than groundwater solute concentrations (e.g. Tranter et al., 1993; 2002; Wadham et al., 2007). The greater solute concentrations in groundwater has been attributed to the longer residence time of groundwater, and high rock/water contact time and ratio (Tranter et al., 1993; Malard et al., 2001; Gooseff et al., 2003; 2006).

Groundwater only contributes small amounts to the water balance of glaciated
catchments, with meltwater providing the most water (Cartwright and Harris, 1981; Fairchild et al., 1999a, b; Hodgkins et al., 2004; Cooper et al., 2011; Hindshaw et al., 2011). However, due to its high solute concentrations, even small groundwater contributions substantially impact proglacial geochemistry and solute fluxes (Hodgkins et al., 1998; Harris et al., 2007; Levy et al., 2011; Gooseff et al., 2003; 2013).

Chemical weathering in proglacial environments is dominated by several major processes. The initial reactions when snow and ice melt interact with glacial flour are carbonate (Equation 6.1.) and silicate hydrolysis (Equation 6.2).

\[
\text{CaCO}_3(s) + H_2O(l) + CO_2(aq) \leftrightarrow \text{Ca}^{2+}(aq) + 2\text{HCO}_3^-(aq)
\]

Equation 6.1. Carbonate hydrolysis

\[
\text{CaAl}_2\text{Si}_2\text{O}_8(s) + 2\text{CO}_2(aq) + 2H_2O(l) \leftrightarrow \text{Ca}^{2+}(aq) + 2\text{HCO}_3^-(aq) + \text{H}_2\text{Al}_2\text{Si}_2\text{O}_8(s)
\]

Equation 6.2. Silicate hydrolysis

\[
4\text{FeS}_2(s) + 16\text{CaCO}_3(s) + 15\text{O}_2(g) + 14H_2O(l) \leftrightarrow 16\text{Ca}^{2+}(aq) + 16\text{HCO}_3^-(aq) + 8\text{SO}_4^{2-}(aq) + 4\text{Fe(OH)}_3(s)
\]

Equation 6.3. Coupled sulphide oxidation and carbonate dissolution

The rates of kinetic dissolution for carbonates greatly exceed those of silicates. Field evidence from Haut Glacier d’Arolla (Swiss Alps) shows that, although the bedrock contained only trace amounts of carbonates and sulphides, the dissolution ratio of carbonate to silicates was around 5:1 (Tranter et al., 2002a, b). The coupling of carbonate dissolution and sulphide oxidation provides protons to solution, which then drive further carbonate dissolution and weathering (Equation 6.3) (e.g. Fairchild et al., 1999; Wadham et al., 2001; Tranter et al., 1996; Hodson et al., 2002; Tranter, 2003; Robinson et al., 2009b). Coupled carbonate dissolution-sulphide oxidation was found to be the dominant
weathering mechanism in young proglacial sediments, even in catchments where carbonates and sulphides only occur in trace amounts (Cooper et al., 2002; Hindshaw et al., 2011). Therefore, coupled carbonate dissolution and sulphide oxidation (Equation 6.3) significantly impacts meltwater chemistry, even in catchments where carbonates are only found in trace concentrations (e.g. Raiswell and Thomas, 1984; Tranter et al., 2002; Hindshaw et al., 2011). When the reactive sulphide minerals are exhausted, silicate dissolution becomes the dominant process (Anderson et al., 2000; Wadham et al., 2001). However, this trend becomes less pronounced in catchments with high spatial variability in the availability of exposed sulphide minerals, such as those dominated by frequent glacier margin fluctuations and jökulhlaups (Robinson et al., 2009b). Although some of the factors that contribute to the high denudation rates are common in most proglacial settings, there is a significant spatial variability in proglacial geochemistry. This heterogeneity is attributed to differences in catchment geology (e.g. Hindshaw et al. 2011), age of substrate (e.g. Anderson et al., 2000), glacier thermal regime (e.g. Hodgkins et al., 1998), drainage patterns and hydrological connectivity (e.g. Boucher and Carey, 2010), and meteorological factors such as the amount of precipitation and evaporation (e.g. Cooper et al., 2002).

Proglacial solute concentrations in meltwaters have high temporal variability, which is strongly linked to the efficiency of the glacial drainage system. Solute concentrations are usually high at the start of the melting season, probably due to preferential leaching of solutes from the edges of snow crystals (e.g. Yde et al., 2008) and to the distributed configuration of the subglacial drainage system (e.g. Tranter et al., 1993). As the ablation season progresses, solute concentrations begin to fall due to the exhaustion of snowmelt and to the increasing efficiency of the glacial drainage, which reduces water/rock contact and solute acquisition. At the end of the melt season, solute concentrations increase, as distributed drainage and long water/rock contact becomes dominant again (Clow et al., 2003; Gabet et al., 2010; Hindshaw et al., 2011; Kristiansen et al., 2013).
The mean chemical and physical denudation rate in Iceland is 37 t/km2/yr, which exceeds the mean continental rate by approximately 11 t/km2/yr (Berner and Berner, 1996; Gíslason, 2005). These high weathering rates are attributed to the combination of high relief, high runoff, abundance of reactive substrate and a lack of sedimentary traps (Gíslason, 2008). The chemistry of Icelandic rivers is controlled by variations in water source and discharge, chemical weathering, geothermal activity, atmospheric deposition, and vegetation (Gíslason and Arnorsson, 1993; Gíslason, 2005; Gíslason and Torssander, 2006; Flaathen and Gíslason, 2007; Eiriksdóttir et al., 2008; Sigfusson et al., 2008; Óskarsdóttir et al., 2011). Volcanic eruptions also impact the chemistry of Icelandic groundwater and surface water, particularly by the deposition and dissolution of tephra (Flaathen et al., 2009; Olsson et al., 2013; Galeczka et al., 2014).

Catchment lithology plays an important control on proglacial geochemistry, with high weathering rates occurring in catchments with reactive minerals (e.g. Rutter et al., 2011). The weathering rates of young rocks in Iceland exceed those of older ones (Louvat et al., 2008). Skaftafellsjökull is located within the catchment of Öræfajökull, an ice-covered stratovolcano, which is located in the young neovolcanic zone in SE Iceland (Björnsson and Einarsson, 1990). The rock suite is mainly composed of subglacial pillow lava and hyaloclastite tuff, whose composition ranges from basalt to rhyolite. The rock suite of Öræfajökull contains high amounts of glassy basalt, which has been preferentially formed during subglacial eruptions (Prestvik, 1980; Selbekk and Trønnes, 2007). The weathering and dissolution rates of basaltic glass substantially exceed those of crystalline basalt, hence providing high solute fluxes to the catchment (Gíslason and Eugster, 1987, Gíslason et al., 2006; Pogge van Strandmann, 2008, Robinson et al., 2009b; Hindshaw et al., 2013).
6.1.2. The use of stable water isotopes (δ^{18}O and δD) in hydrology

Water stable isotopes (δ^{18}O and δD) have been used extensively in glaciated catchments for the tracing of hydrological pathways and sources of recharge (e.g. Theakstone and Knudsen, 1996; Chiogna et al., 2014), to perform hydrograph separation (e.g. Fairchild et al., 1999b; Klaus and McDonnell, 2013), and in studies of paleohydrogeology (e.g. Hendry et al., 2013). The composition of water stable isotopes is determined by the atomic weight of the hydrogen and oxygen molecules, which sums the amount of protons and neutrons of each element. However, a small percentage of the molecules have higher atomic weight, due to higher number of neutrons (δ^{18}O and δD). These differences in isotopic composition lead to different rates of reaction between the molecules, where the reactions of the heavy molecules (18O, 2H) are slower than those of the light ones (16O and 1H). These different rates of reaction lead to isotopic fractionation, which takes place as the lighter isotopes are preferentially removed into the vapour mass during evaporation from a water source. Conversely, the heavier isotopes are preferentially removed from the vapour phase during condensation and precipitation, which progressively depletes the vapour mass of its heavier isotopes as it moves further from its source of origin (Clark and Fritz, 1997) (Figure 6.1). The global distribution of water stable isotopes is based on the predictable relationship between δD and δ^{18}O in precipitation, which is described by the Global Meteoric Water Line (GMWL) (Craig, 1961a, b). The GMWL is calculated using Figure 6.1. The increasing depletion of isotopic composition with increasing continentality and altitude (from Robinson, 2003).

\[
\delta\text{D} = 8 \left(\delta^{18}\text{O} \right) + 10^{\circ}\text{o}
\]

Isotopic fractionation is strongly dependent on climatic factors such as humidity and temperature. Fractionation generally increases at low humidity and high temperature (Dansgaard, 1964; Rozanski et al., 1993; Clark and Fritz, 1997). Elevation impacts isotopic composition due to its impact on the formation of orographic precipitation, lower evaporation, and lower snow melt. Hence, the isotopic composition of precipitation generally becomes lighter with increasing elevation (Clark and Fritz, 1997; Jonsson et al., 2009; Ohlanders et al., 2013; Flaim et al., 2014). The source of moisture for precipitation exerts an important control on the seasonal variability in isotopic composition, with multiple precipitation sources leading to higher variability in the isotopic composition of precipitation (Jeelani et al., 2010). Due to these aforementioned factors, the isotopic composition of precipitation becomes more depleted with increasing latitude, continentality and altitude (Figure 6.1) (e.g. Jeelani et al., 2010; Gooseff et al., 2013).

Figure 6.1. The increasing depletion of isotopic composition with increasing continentality and altitude (from Robinson, 2003).

The Local Meteoric Water Line (LMWL) is the line of best fit for the isotopic composition of precipitation at any given location (Gat et al., 2001). The LMWL provides a better
representation for the isotopic composition of the precipitation that feeds the catchment than the GMWL because of the importance of local factors. Hence, it is useful in understanding the regional variability in the GMWL (e.g. Clark and Fritz, 1997). In middle and high latitudes, a seasonal variation along the LMWL is driven by temperature, with winter precipitation being more isotopically-depleted than during summer (e.g. Robinson et al., 2009a; Yang et al., 2013). Samples along the LMWL which plot on a slope lower than that of the GMWL can suggest isotopic enrichment due to post- condensation evaporation, which can occur when rain falls through a dry air column (Clark and Fritz, 1997, Mayr et al., 2007). However, the LMWL can be sensitive to local disturbances and precipitation events (e.g. Chiofina et al., 2014).

The isotopic composition of groundwater (Kortelainen and Karhu, 2004; Jeelani et al., 2010), streams (e.g. Burgman et al., 1987; Jeelani et al., 2010; Dahlke et al., 2014; Kong et al., 2014), and lakes (e.g. Roy and Hayashi, 2009; Jonsson et al., 2009; Gao et al., 2014) in cold environments is substantially impacted by seasonality. Isotopic composition is generally more depleted in spring and summer, due to greater inputs from snow and icemelt, and becomes more isotopically heavier in autumn and winter, following increasing contributions from precipitation and baseflow. The seasonal isotopic variability of groundwater is generally less than that of surface water (e.g. Yang et al., 2013; Chiofina et al., 2014). The temporal variability in the isotopic composition of lakes is impacted by meteorological variability and by hydrological parameters such as lake morphometry, water residence times, storage capacity, drainage efficiency, groundwater contributions, and evaporation (Gonflantini, 1986; Rozanski et al., 1993; Gat, 1996; Vitvar and Balderer, 1997; Hammarlund et al., 2002; Darling, 2004; Edwards et al., 2004; Kortelainen and Karhu, 2004; Henderson and Shuman 2009; 2010; Zhou et al., 2008; 2013; Flaim et al., 2014). The isotopic composition of lakes in cold regions is also substantially impacted by the degree of mixing within the water column, and the ice cover (Saulnier-Talbot et al., 2007; Jonsson et al., 2009).
Chapter 3

Field sites

The Deuterium Excess \((d\text{-}excess) \) measures the relative proportions of \(\delta D \) and \(\delta^{18}O \) within the water molecule (Equation 6.5), which represent an index of deviation from the GMWL, where \(d\text{-}excess \) is 10‰ (Dansgaard, 1964). The \(d\text{-}excess \) has been previously used to delineate sources of precipitation and to investigate the prominence of evaporation and melt-freeze cycles (e.g. Williams et al., 2006; Gooseff et al., 2006; Kristiansen et al., 2012).

\[
d\text{-}excess \ (‰) = \delta D - 8 \times (\delta^{18}O)
\]

Equation 6.5. Determination of Deuterium Excess (d-excess)

The \(d\text{-}excess \) is controlled by physical conditions (air and sea surface temperature and humidity) at the ocean where precipitation originates (Merlivat and Jouzel, 1979). Hence, it reflects the prevailing conditions during the evolution and mixing which takes place as air masses travel to the site of precipitation (Merlivat and Jouzel, 1979; Froehlich et al., 2002). In addition to the history of the air mass, the \(d\text{-}excess \) is strongly impacted by seasonality, changes in moisture sources, and kinetic effects (Fisher, 1991; Clark and Fritz, 1997; Froehlich et al., 2002; Kristiansen et al., 2012). Therefore, \(d\text{-}excess \) is higher in winter, due to the higher contrasts between sea surface and air temperature, which occur in winter, and lead to stronger kinetic effects during evaporation from local source regions. Conversely, \(d\text{-}excess \) is lower during summer due to the larger influence from warmer seas, which reduces the kinetic fractionation in which vapour is formed (Gat, 1996; Clark and Fritz, 1997).

The overall aim of this chapter is to identify the sources of recharge for the groundwater and surface water systems at the Skaftafellsjökull foreland (objective iii). The specific objectives of this chapter are:
Chapter 3

Field sites

1. To describe the spatial and temporal variability in groundwater and surface water geochemistry in the different hydro(geo)logical environments of the Skaftafellsjökull foreland.

2. To describe the spatial variability of $\delta^{18}O$ and δD composition of groundwater and surface water in the different hydro(geo)logical environments of the Skaftafellsjökull foreland.

3. To identify the sources of groundwater and surface water recharge at the Skaftafellsjökull foreland using geochemical and stable isotope evidence.

4. To investigate proglacial groundwater-surface exchange processes and mechanisms using water geochemistry and water stable isotopes.

6.2. Methods

6.2.1. Analysis of groundwater and surface water quality

Temperature and Electrical Conductivity (EC) are important environmental parameters, which are monitored with relative ease and low cost (e.g. Hayashi, 2004). Temperature and EC can therefore be used to investigate groundwater-surface water exchange in proglacial environments (e.g. Crossman et al., 2011). Groundwater was extracted from the piezometers using a hand pump. Prior to sampling, three well volumes were purged, in order to ensure a representative sample (Brassington, 2007). In order to check that this amount was sufficient, groundwater EC was checked every 150 ml, until EC was stable (e.g. Brassington, 2007). These tests have shown that groundwater EC stabilised before three well volumes were purged (Figure 6.2). Hence, purging three well volumes was sufficient for obtaining a representative sample.
Figure 6.2. Purging experiments to determine the volume of groundwater needed to attain representative samples.

These results were obtained from GW9 and GW8, where the required three well volumes were 1.14 L and 1.61 L, respectively.

The samples were filtered in the field using a Fisher® filter kit, with filter paper pore size of 0.47 µm. The filter paper was replaced after each sample. In order to prevent cross-contamination between sites, all sampling apparatus were rinsed at least three times with representative sample water prior to sampling. The samples were then placed in new 30 ml Fisher® HDPE Nalgene bottles, which were pre-contaminated with sample water and then filled to a positive meniscus. The bottles were sealed with Parafilm® and stored away from direct sunlight between two to six weeks. Upon returning to the laboratory, the
samples were refrigerated at 4°C. In order to prevent the adsorption of cations onto the bottle, samples intended for cation analysis were pre-acidified with 0.1 ml of 5% nitric acid (Brassington, 2007). The samples were analysed within four weeks upon their return to the laboratory.

EC and temperature at this study were monitored using a handheld WTW Multiline P4 EC/Temperature probe. The meter was calibrated with standard 1431 µS/cm solution prior to the start of the field season. The accuracy is within ±1 % of the measured value (WTW manual).
Chapter 6 Geochemistry and stable isotopes

Since most samples at the Skaftafellsjökull foreland were below 300 μS/cm, the accuracy can be approximated to be around 2 μS/cm. The accuracy for the temperature measurements are 0.1°C. In addition to the manual measurements, groundwater temperature (±0.1°C) and EC (±20μS/cm) at T1-T3 and the Skaftafellsá were monitored using pressure transducers (Table 6.1). In order to prevent cross contamination between samples, all probes were also rinsed at least three times with representative sample water prior to measurements.

Table 6.1. Analytical equipment, accuracy of equipment, and frequency of measurements taken in this study.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Equipment</th>
<th>Accuracy</th>
<th>Frequency of monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW levels (automatic)</td>
<td>Solinst Levelloggers</td>
<td>±0.001 m</td>
<td>hourly</td>
</tr>
<tr>
<td>Water temperature</td>
<td>Solinst Levelloggers</td>
<td>±0.1 °C</td>
<td>hourly</td>
</tr>
<tr>
<td>Water EC</td>
<td>Solinst Levellogger</td>
<td>±20 μS/cm</td>
<td>hourly</td>
</tr>
<tr>
<td>GW levels (manual)</td>
<td>Solinst dip meter</td>
<td>±0.003 m</td>
<td>Twice a day</td>
</tr>
<tr>
<td>GW temperature</td>
<td>WTW Multiline P4 probe</td>
<td>0.1 °C</td>
<td>Every time samples were obtained for geochemical analysis</td>
</tr>
<tr>
<td>GW EC</td>
<td>WTW Multiline P4 probe</td>
<td>2 μS/cm</td>
<td>Every time samples were obtained for geochemical analysis</td>
</tr>
<tr>
<td>δD composition</td>
<td>Cavity Ring-Down Spectroscope-Picarro L1102-i liquid analyzer</td>
<td>±0.5‰</td>
<td></td>
</tr>
<tr>
<td>δ¹⁸O composition</td>
<td>Cavity Ring-Down Spectroscope-Picarro L1102-i liquid analyzer</td>
<td>±0.1‰</td>
<td></td>
</tr>
</tbody>
</table>

6.2.2. Analysis of major anions and cations

Major cations (Ca²⁺, K⁺, Mg²⁺, Na⁺) were analysed on an Varian Vista MPX Inductive Coupled Plasma-Optical Emission Spectrometer (ICP-OES) at Keele University. The standards used were 10 and 100 mg/l. Major anions were analysed on an Ion chromatography DIONEX, using standards for 1, 5 and 10 mg/l for Cl⁻, NO₃⁻, F⁻ and PO₄³⁻ and 2, 10 and 20 mg/l for SO₄²⁻. PO₄³⁻, F⁻, NO₃⁻ concentrations were below the limit of
Chapter 6 Geochemistry and stable isotopes

detection (Table 6.2). The Limit of Detection (LoD) for cations and anions (Table 6.2) was determined by the mean concentration in the blanks ± standard deviations.

Table 6.2. Limit of Detection and precision for major anions and cations.
The detection limits and precision were obtained from analysis of blanks for all ions except for Na⁺, which was obtained from the manufacturer’s website.

<table>
<thead>
<tr>
<th>Anion</th>
<th>Precision (%)</th>
<th>Detection Limit (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl⁻</td>
<td>1.52</td>
<td>0.09</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>3.71</td>
<td>0.20</td>
</tr>
<tr>
<td>Cations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>0.77</td>
<td>0.42</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>3.15</td>
<td>0.16</td>
</tr>
<tr>
<td>Na⁺</td>
<td>2.95</td>
<td>0.2 (Varian, 2014)</td>
</tr>
<tr>
<td>K⁺</td>
<td>2.32</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Four field blanks were collected in order to determine the potential for contamination during sampling, storage and analysis. These blanks consisted of deionised water which was filtered and emplaced in bottles following the same procedures that were used for sampling groundwater and surface water. The blanks were then analysed for major cations and anions. Cation concentrations in all the blanks were below the detection limits. With the exception of one blank (0.27 mg/l), SO₄²⁻ concentrations in all blanks were below the LoD. However, the field blanks had between 0.17-0.50 mg/l of Cl⁻. This indicates some contamination during sampling, storage or analysis. Drift was determined by analysing a sample at the start, middle and end of a batch (48 samples for the anions, 40 samples for the cations). The drift for all anions and cations were below 2%. “Hangover” effects during the analysis were checked by emplacing vials containing deionised water after some samples. Cation concentrations in the deionised water were below detection limit. The mean Cl⁻ concentration was 0.14±0.01 mg/l. This shows some “hangover” effects in the analysis of Cl⁻ and SO₄²⁻.
Chapter 6 Geochemistry and stable isotopes

6.2.3. Water stable isotopes (δ^D and $\delta^{18}O$)

Samples for water stable isotopes ($n=31$) were collected from groundwater, lakes, and the meltwater river (section 6.5) on the 24-25/08/2012. The collected 20 ml water samples were analyzed for their δ^D and $\delta^{18}O$ composition at the Isotope laboratory at the Hydrology and Climate Unit, the Department of Geography, University of Zurich. In addition to the filtration in the field, all isotope samples were filtered prior to analysis with a 0.45 μm filter (25 mm PTFE Syringe Filter, Simplepure™ USA) from which 1 ml was pipetted in a vial (1.5 ml 32×11.6 mm screw neck vials with cap and PTFE/silicone/PTFE septa). Samples were analyzed with a Cavity Ring-Down Spectroscope-Picarro L1102-i Liquid Analyser 1st generation analyzer, following the analyzing scheme of Penna et al. (2010). The precision of the instrument is $<0.5 \permil$ for δ^2H and $<0.1 \permil$ for $\delta^{18}O$ (Picarro Inc., 2008). Values are reported as δ-values in parts per thousand (\permil) relative to Vienna Standard Mean Ocean Water (V-SMOW). The deviation of isotope ratios from the V-SMOW standard (δ) was calculated using Equation 6.6 (Craig, 1961a).

$$
\delta = \left(\frac{R_{\text{sample}} - R_{\text{standard}}}{R_{\text{standard}}} \right) \times 1000
$$

Equation 6.6. Deviation of isotope ratio from the V-SMOW standard.

R is the isotope ratio ($^2H/^1H$ and $^{18}O/^16O$) in the sample and the standard (V-SMOW).

6.3. Spatial and temporal variability in groundwater quality
Manual measurements of groundwater physicochemical parameters (section 6.2.1) and samples for geochemical analysis (section 6.2.2) were obtained from piezometers. The samples were collected during three sampling intervals, which took place around the 10/07/2012, 26/07/2012, and 31/08/2012, with each interval lasting between one and two days (Figure 6.4). Water physicochemical parameters (Temperature and Electrical Conductivity [EC]) were measured during the same time as samples were collected for geochemical analysis.

Figure 6.3. The field site and sampling points at the Skaftafellsjökull foreland.

A. The hydro(geo)logical environments at the Skaftafellsjökull foreland. Groundwater samples are denoted in black and surface water sampling points are denoted in white. B. The piezometers where groundwater samples were collected (black triangles). The area of inset B is denoted by the black box in inset A. The position of the meltwater channel has shifted eastwards since the time of the image (Vatnajökull National Park, 2007). The position of the meltwater channel during the study (August 2012) is denoted by the dashed blue line.
6.3.1. Groundwater physicochemical parameters

This section describes the temporal and spatial variability in groundwater temperature and EC. Temperature is an effective environmental tracer for groundwater-surface water exchange due to its relatively simple, economic, and robust measurements (e.g. Westhoff et al., 2007; Hannah et al., 2009). Temperature tracing is especially effective when significant temperature differences exist between groundwater and surface water (e.g. Rossi et al., 2012). Such conditions were reported from various proglacial environments (e.g. Kristiansen et al., 2013), including the current study (Figure 6.5). In addition to the manual monitoring, groundwater and meltwater temperatures and EC at the transect (piezometers T1-T3) were also monitored automatically alongside hydraulic heads. The

Figure 6.4. Total daily precipitation (IMO, 2013), hydraulic heads at the Skaftafellsjökull foreland, and the sampling intervals for groundwater (white arrows) and surface water.

The number of the intervals are marked. Surface water were sampled four times, with the extra interval (grey arrow) taking place on the 21/07/2012.
current chapter only discusses the manual monitoring. The results from the automated monitoring from T1-T3 and the Skaftafellsá are discussed in Chapter 7.

The spatial and temporal variability in groundwater and surface water temperature at the Skaftafellsjökull foreland is presented in Figure 6.6. The mean surface water temperature was higher than groundwater temperature by 3°C. However, surface water temperatures also had higher variability (Figure 6.5). The lowest groundwater temperatures were measured in the GW9 piezometer (depth of 1.45 m below ground), located 20 m away from the Skaftafellsá meltwater channel. The highest groundwater temperatures were measured in the piezometers around the Instrumented Lake (IL). However, groundwater temperatures were lower during sampling interval III (30/08/2012), particularly in piezometers which are located in the fine-grained lakeshores of the IL. Conversely, groundwater temperature near the Skaftafellsá (GW5 and GW9) during interval III were substantially higher than during previous intervals (Figure 6.6).
Figure 6.5. Boxplot of groundwater and surface water temperature (°C) and Electrical Conductivity (EC) [μS/cm].

The comparison includes all groundwater (n=57) and surface water samples (n=78). The horizontal lines denote the minimum, Q1, Q3, and the maximum. The thick black line denotes the median. The mean and standard deviation are presented above each box. The dots denote outliers in the data. The full data set is found in Appendix 5.

EC has also been previously used alongside temperature in the investigation of proglacial groundwater-surface water exchange. Similar to temperature, EC is also particularly effective for investigating proglacial groundwater-surface water exchange due to the significant differences between the end-members (Cirpka et al., 2007; Vogt et al., 2010; Hayashi et al., 2012; Schmidt et al., 2012). Groundwater and surface water EC at the Skaftafellsjökull foreland ranged between 20-210 μS/cm, with groundwater EC generally exceeding that of surface water (Figure 6.5). The spatial variability in groundwater and
surface water EC is presented in Figure 6.6. The lowest groundwater EC was measured at GW9 (~50 μS/cm). The highest EC was measured in the transect (~180 μS/cm at T1) and at GW5 (~210 μS/cm). The EC of most groundwater samples from the IL and the outwash ranged between 100-150 μS/cm. The temporal fluctuations in groundwater EC were generally below 10 μS/cm, except at the transect and GW9, where concentrations increased by ~30-40 μS/cm in August (Figure 6.6).

Figure 6.6. Temperature and EC in the different hydrological environments of the Skaftafellsjökull foreland.
Groundwater samples are denoted in black. Surface water samples are denoted in colour. The filled shapes mark measurements during interval III (31/08/2012).

6.3.2. Spatial and temporal variability in groundwater solute concentrations

This section describes the spatial and temporal variability in groundwater solute concentrations at the different hydrological environments of the Skaftafellsjökull foreland: near the meltwater river; groundwater from around the lakeshores of the Instrumented
Lake (IL); the transect, and the outwash (Figure 6.3). Substantial differences were measured between the geochemistry of groundwater and surface water, with solute concentrations in groundwater generally exceeding those in surface water (Figure 6.7). Ca$^{2+}$ and Na$^+$ were the dominant cations in both groundwater and surface water. The mean SO$_4^{2-}$ concentrations in groundwater exceeded those of Cl$^-$. The mean Cl$^-$ concentrations in surface water exceeded those in groundwater (Table 6.3). The concentrations of the divalent (Ca$^{2+}$ and Mg$^{2+}$) and monovalent (Na$^+$ and K$^+$) were presented together, following the approach of other studies of proglacial geochemistry (e.g. Cooper et al., 2002). The concentrations of F$^-$, NO$_3^-$ and PO$_4^{3-}$ were generally below detection limit in most samples, and are not presented. Due to logistical constraints, HCO$_3^-$ was not measured at this study, although it is likely to be the dominant anion (e.g. Brown, 2003). Similar to other studies which have looked at geochemical aspects of proglacial groundwater-surface water interaction (e.g. Cooper et al., 2002) the data in the current study was not compensated for marine aerosols.

Figure 6.7. Boxplot comparison of Ca$^{2+}$ + Mg$^{2+}$, SO$_4^{2-}$, Cl$^-$, and Na$^+$ + K$^+$ concentrations (µeq/l) between groundwater and surface water.
Chapter 6

Geochemistry and stable isotopes

This comparison includes all groundwater (n=57) and surface water (n=78) samples. More detailed descriptions of solute concentrations in the different hydrological environments are provided later in the chapter. The horizontal lines of the boxes denote the minimum, Q1, Q3, and the maximum. The thick black line denotes the median. The dots show outliers in the data. The mean and standard deviation (µeq/l) are presented above each box.

The spatial variability in solute concentrations within the different hydrological environments is presented in Figure 6.8-6.10. Similar to the spatial distribution in EC, the lowest groundwater solute concentrations were also measured at GW9, located 20 m away from the Skaftafellsá meltwater channel (Figure 6.3). The highest solute concentrations were generally measured in the piezometers of the transect (T1-T3), which stretches between the Skaftafellsá and the IL (Figure 6.3). Statistical t-tests (one tail test, 2.5% Significance Level [SL]) have shown that SO$_4^{2-}$, Ca$^{2+}$+ Mg$^{2+}$, and Na$^+$+ K$^+$ concentrations in groundwater were significantly higher ($p=<0.001$) than the concentrations in surface water. Conversely, Cl$^-$ concentrations in groundwater were not significantly higher than those in surface water ($p=0.831$).

Figure 6.8. SO$_4^{2-}$ and Cl$^-$ concentrations (µeq/l) in groundwater and surface water at the Skaftafellsjökull foreland.
Black markers denote groundwater samples. Coloured markers denote surface water samples. The filled shapes mark solute concentrations during interval III (31/08/2012).

Figure 6.9. SO_4^{2-} and $\text{Ca}^{2+} + \text{Mg}^{2+}$ concentrations (µeq/l) in groundwater and surface water at the Skaftafellsjökull foreland.

Groundwater samples are denoted in black. Surface water samples are denoted in colour. The filled shapes mark solute concentrations during interval III (31/08/2012). The samples from T3 are within the dashed circle.

Figure 6.10. SO_4^{2-} and $\text{Na}^+ + \text{K}^+$ concentrations (µeq/l) in groundwater and surface water from the Skaftafellsjökull foreland.
Groundwater samples are denoted in black. Surface water samples are denoted in colour. The filled shapes mark solute concentrations during interval III (31/08/2012). The samples from T3 are within the dashed circle.

Table 6.3. Mean and standard deviation of solute concentrations, EC, and temperature of groundwater and surface water at the Skæftafellssjökull foreland.

The numbers in brackets denote the number of samples within each environment. A fuller description of the surface water solute concentrations and physicochemical parameters is provided in section 6.4.

<table>
<thead>
<tr>
<th>Solute concentration (µeq/l)</th>
<th>SO$_4^{2-}$</th>
<th>Cl$^-$</th>
<th>Ca$^{2+}$+Mg$^{2+}$</th>
<th>Na$^+$ + K$^+$</th>
<th>EC (µS/cm)</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transect (10)</td>
<td>243±96</td>
<td>140±6</td>
<td>1620±190</td>
<td>490±72</td>
<td>159±14</td>
<td>10.0±1.1</td>
</tr>
<tr>
<td>Outwash (11)</td>
<td>176±42</td>
<td>130±17</td>
<td>1338±136</td>
<td>423±89</td>
<td>134±11</td>
<td>9.2±1.8</td>
</tr>
<tr>
<td>Near river (6)</td>
<td>127±143</td>
<td>71±27</td>
<td>1070±711</td>
<td>348±147</td>
<td>125±72</td>
<td>8.1±2.8</td>
</tr>
<tr>
<td>Inst. Lake (30)</td>
<td>144±27</td>
<td>132±12</td>
<td>1241±245</td>
<td>555±212</td>
<td>134±23</td>
<td>10.0±2.5</td>
</tr>
<tr>
<td>Surface water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>River Skæftafellssá (7)</td>
<td>15±2</td>
<td>34±11</td>
<td>91±37</td>
<td>113±23</td>
<td>23±3</td>
<td>12±0.3</td>
</tr>
<tr>
<td>N. Oasis lakes (17)</td>
<td>29±12</td>
<td>153±36</td>
<td>285±105</td>
<td>298±167</td>
<td>55±10</td>
<td>16±1</td>
</tr>
<tr>
<td>S. Oasis lakes (65)</td>
<td>62±27</td>
<td>138±21</td>
<td>1063±246</td>
<td>382±79</td>
<td>118±16</td>
<td>14±1</td>
</tr>
</tbody>
</table>

Groundwater levels and geochemistry near the Skæftafellssá were investigated at GW9 and GW5, which are located 20 and 38 m away from the meltwater channel, respectively. The piezometers are located south of the transect, between the river Skæftafellssá and Swan Lake (perpendicular to the river meltwater channel) (Figure 6.3). The piezometers are underlain by coarse-grained deposits. The riverbank near GW9 is shallow (0.35 m high) and meltwater overspill was regularly observed during the field season. However, the frequency of such overflows fell in late August 2012, following a substantial decline in meltwater levels.

Groundwater Cl$^-$, Ca$^{2+}$+Mg$^{2+}$, and Na$^+$+K$^+$ concentrations near the Skæftafellssá were significantly higher (1 tail t test, 2.5% S.L., $p=<0.001$ to 0.011) than meltwater concentrations of these solutes (Figure 6.8-6.10). Conversely, groundwater SO$_4^{2-}$ concentrations were not significantly greater than meltwater concentrations ($p=0.056$). Despite the short distance between GW9 and GW5, substantial differences in groundwater solute concentrations were observed between these two piezometers.

Groundwater from GW9 had the lowest EC, which ranged between 40-90 µS/cm (Figure
6.6) and solute concentrations. These values varied between 50-70 µeq/l Cl-, 20-63 µeq/l SO\textsubscript{4}2- (Figure 6.8), 424-898 µeq/l Ca2++Mg2+ (Figure 6.9), and 179-312 µeq/l Na++ K+ (Figure 6.10). In contrast to the low solute concentrations at GW9, solute concentrations at GW5 were much higher, with most solute concentrations (except Cl-) approaching those measured at T3 and the more solute-rich groundwater from around the IL (Figure 6.9, 6.10). However, Cl- concentrations at GW5 were lower than those measured in other groundwater environments (Figure 6.8).

Groundwater solute concentrations near the river generally increased during the field season (Figure 6.11). Solute concentrations at GW9 increased slightly between intervals I and II. However, the changes in solute concentrations between intervals II and III (end of August 2012) were much larger, with solute concentrations increasing by 1.5 - 3 times. In contrast to the moderate increases between Intervals I and II at GW9, solute concentrations at GW5 have shown substantial and continuous increase during all three intervals (with the exception of Cl- concentrations between intervals I and II). However, the larger increases took place between intervals II and III. These increases in solute concentrations were followed by a substantial drop in river and groundwater levels which began around the 20/08/2012 (Figure 6.4). The SO\textsubscript{4}2- (400 µeq/l) and Ca2++Mg2+ (2300 µeq/l) concentrations which were measured at GW5 in August were abnormally high.
The transect is located between the meltwater channel and the IL and is underlain by coarse glaciofluvial sediments (Figure 6.3). The depth of the three piezometers (T1-T3) varies between 1.6-1.8 m below ground. Groundwater solute concentrations in the transect were high. However, a considerable spatial variability between the three piezometers was observed, with high groundwater solute concentrations at T1 (27 m away from the Skátafellssá channel) and T2 (54 m away from the channel) and lower concentrations at T3 (69 m away from the channel).

The highest SO_4^{2-} concentrations were measured at T1, where concentrations varied between 260 and 415 µeq/l. SO_4^{2-} concentrations at T2 varied between 140-318 µeq/l. In contrast to the high SO_4^{2-} concentrations at T1 and T2, the concentrations and range at T3 (158-200 µeq/l SO_4^{2-}) were substantially lower (Figure 6.8). Cl^{-} concentrations at the transect exceeded most groundwater concentrations in the outwash area and around the...
IL, with mean Cl\(^-\) concentrations of approximately 140 µeq/l in all three piezometers.

Groundwater Ca\(^{2+}\) + Mg\(^{2+}\) concentrations in the transect were amongst the highest measured in this study, exceeding those from the outwash and around the IL. The highest mean concentrations of Ca\(^{2+}\) + Mg\(^{2+}\) were measured at T1 (1681 µeq/l), followed by T2 (1633 µeq/l) and T3 (1564 µeq/l) (Figure 6.9). The mean groundwater Na\(^{+}\) + K\(^{+}\) concentrations in the transect (490 µeq/l) were also amongst the highest in the field site. However, the range and standard deviation at the transect were the smallest (Table 6.3). In contrast to SO\(_4^{2-}\) and Ca\(^{2+}\) + Mg\(^{2+}\), the highest mean Na\(^{+}\) + K\(^{+}\) concentrations were measured at T3 (556 µeq/l), where mean concentrations exceeded those at T1 and T2 by approximately 100 µeq/l (Figure 6.10).

Groundwater solute concentrations at the transect generally increased between sampling intervals I and II. Ca\(^{2+}\) + Mg\(^{2+}\) concentrations increased in all three piezometers, with the highest overall increase (~300 µeq/l) measured at T2. The temporal variability in SO\(_4^{2-}\) concentrations during this period was mixed. SO\(_4^{2-}\) concentrations fell by approximately 120 µeq/l at T1. Conversely, concentrations at T2 rose by approximately 80 µeq/l. Na\(^{+}\) + K\(^{+}\) concentrations in all three piezometers have also increased slightly. Groundwater solute concentrations increased between Interval II and III at T1 and T2. Groundwater concentrations at T1 and T2 have increased by ~300 µeq/l Ca\(^{2+}\) + Mg\(^{2+}\), approximately 120 µeq/l SO\(_4^{2-}\) and, ~60 µeq/l Na\(^{+}\) + K\(^{+}\), respectively. Conversely, the changes in solute concentrations at T3 were substantially smaller (Figure 6.12).
A considerable spatial variability in groundwater geochemistry has been observed between the fine and coarse-grained lakeshores of the Instrumented Lake (IL). Cl$^-$ and SO$_4^{2-}$ concentrations ranged between 95-155 and 110-223 µeq/l, respectively. Generally, groundwater SO$_4^{2-}$ concentrations at the coarse-grained lakeshore [L1-4, L7, and the Sand Nest (S.N.)] exceeded groundwater SO$_4^{2-}$ concentrations at the fine-grained lakeshore (L5, 6, Clay Nest [C.N.]). The highest concentrations of Cl$^-$ and SO$_4^{2-}$ were measured at L1, which is located in coarse-grained sediment. In contrast to the transect and the piezometers near the Skaftafellsá, the variability in Cl$^-$ concentrations around the IL generally exceeded that of SO$_4^{2-}$. Most Cl$^-$ and SO$_4^{2-}$ IL groundwater concentrations are “clustered” together, with concentrations of ~130-140 µeq/l Cl$^-$ and 100-135 µeq/l SO$_4^{2-}$. However, Cl$^-$ and SO$_4^{2-}$ concentrations in some piezometers from the coarse-grained area
(L1, L2) and the fine-grained area (L7) exceeded the concentrations measured in the “cluster” (Figure 6.8).

The Ca\(^{2+}\) + Mg\(^{2+}\) concentrations of IL groundwater varied between 930-1550 µeq/l. In contrast to the distinct “cluster” of Cl\(^-\) and SO\(_4^{2-}\) concentrations (Figure 6.8), the Ca\(^{2+}\) + Mg\(^{2+}\) concentrations were more scattered (Figure 6.9). The lowest Ca\(^{2+}\) + Mg\(^{2+}\) concentrations were measured at L4, L6, and the Sand Nest (SN). Similar to the Cl\(^-\) and SO\(_4^{2-}\) concentrations, the highest Ca\(^{2+}\) + Mg\(^{2+}\) concentrations were also measured at L1.

The highest mean and standard deviation of Na\(^+\) + K\(^+\) concentrations at this study were measured in the IL groundwater, where concentrations varied between 300-1100 µeq/l. This contrasts other solutes, where maximum concentrations were generally measured in the transect (Table 6.3). Groundwater concentrations of all solutes around the IL were significantly higher (one tail t test, 2.5%, \(p=<0.001\)) than the concentrations in the lake’s surface water (Figure 6.8-6.10).

The temporal variability in groundwater solute concentrations around the IL has shown that Cl\(^-\) concentrations generally fell during the season, with the lowest concentrations measured at interval III (end of August 2012). The declines in groundwater Cl\(^-\) concentrations in the fine-grained lakeshore generally exceeded that of the coarse-grained lakeshore. Conversely, groundwater SO\(_4^{2-}\) concentrations around the IL generally rose during the season, with the highest concentrations measured in interval III. The highest increases in SO\(_4^{2-}\) concentrations were measured at L1. The SO\(_4^{2-}\) concentrations and temporal variability of the piezometers located in the fine-grained lakeshore were similar (Figure 6.13). Groundwater Ca\(^{2+}\) + Mg\(^{2+}\) concentrations in most of the piezometers around the IL increased by approximately 50 µeq/l between intervals I and II. However, groundwater concentrations in most piezometers fell by approximately 140 µeq/l during Interval III (Figure 6.14). These falls in Ca\(^{2+}\) + Mg\(^{2+}\) concentrations contrasted the temporal dynamics which were observed in the transect and near the Skaftafellsá, where Ca\(^{2+}\) + Mg\(^{2+}\) concentrations during interval III exceeded concentrations during interval II (Figure
6.11, 6.12). Groundwater Na\(^+\) K\(^+\) concentrations in some of the piezometers located in the coarse-grained lakeshore increased between interval I and II. Conversely, concentrations in piezometers emplaced in the fine-grained lakeshore remained similar. However, Na\(^+\) K\(^+\) concentrations in IL groundwater increased during Interval III, with concentrations rising by approximately 300 µeq/l and concentrations in many piezometers nearly doubling those measured during Interval II (Figure 6.14). These large increases contrast with the smaller increases (100 µeq/l) which were observed in the outwash (Figure 6.15), near the Skaftafellsá (Figure 6.11), and the transect (Figure 6.14). The Na\(^+\) K\(^+\) concentrations at the IL groundwater and surface water were similar (around 400 µeq/l) before interval III. However, while groundwater Na\(^+\) K\(^+\) concentration increased during interval III, Na\(^+\) K\(^+\) concentrations in IL surface water fell by approximately 50% (Figure 6.16)

![Figure 6.13. Temporal variability in Cl\(^-\) and SO\(_4\)^{2-}\) in IL groundwater (July-August 2012).](image)
The fine-grained lakeshore is denoted with square and black lines. The coarse-grained lakeshore is denoted by triangles and grey lines.

Figure 6.14. Fluctuations in IL groundwater concentrations of Ca\(^{2+}\), Mg\(^{2+}\) and Na\(^{+}\), K\(^{+}\).

The fine-grained lakeshore is denoted with squares and black lines. The coarse-grained lakeshore is denoted by triangles and grey lines.

The outwash area is the closest hydrological environment to the Skaftafellsjökull glacier margin (~900 m). It is bordered by moraines to the north, east and south and by the Skaftafellsá channel in the west (Figure 6.3). The outwash area is underlain by coarse glaciofluvial deposits, with hydraulic conductivity of ~1.16x10\(^1\) m/day (Figure 5.9). Four piezometers were installed in the outwash, open at depths of 1.36-1.80 m below ground level. GW10 is located north of the western section of the breached moraine, close to the river channel. The remaining three piezometers (GW11, GW12, and P12) are located between the breached moraine and the moraine located north of the IL (Figure 6.3).
Groundwater Ca\(^{2+}\) + Mg\(^{2+}\) and SO\(_4^{2-}\) concentrations in the outwash were lower than the transect, but exceeded groundwater concentrations from the IL and near the Skaftafellsá (Figure 6.9). Groundwater Cl\(^-\) concentrations in the outwash were similar to those from the IL and the transect (Figure 6.8). Na\(^+\) + K\(^+\) concentrations in the outwash were similar to those of IL groundwater (Figure 6.10). The highest SO\(_4^{2-}\), Ca\(^{2+}\) + Mg\(^{2+}\), and Cl\(^-\) concentrations in the outwash were measured at GW10 (Figure 6.8, 6.9). Conversely, Na\(^+\) + K\(^+\) concentrations at GW10 did not substantially exceed those at GW11 and GW12 (Figure 6.10).

During interval I, groundwater Ca\(^{2+}\) + Mg\(^{2+}\), Cl\(^-\), and SO\(_4^{2-}\) concentrations in the outwash were close to those of the IL “cluster” and lower than solute concentrations in the transect. Concentrations then rose slightly during interval II. Similar to the transect and the piezometers near the river, hydraulic heads at the outwash area also fell by 0.06-0.20 m between intervals II and III. However, in contrast to the large increase in groundwater solute concentrations at these environments, the increases in the outwash were smaller. The largest increases were Ca\(^{2+}\) + Mg\(^{2+}\) at GW11 and GW12 and Na\(^+\) + K\(^+\) at P12. This pattern (a fall in Cl\(^-\) and rise in SO\(_4^{2-}\)) is similar to the patterns observed at the IL “cluster”. However, the increases in SO\(_4^{2-}\) and Ca\(^{2+}\) + Mg\(^{2+}\) concentrations at the outwash have extended the differences in groundwater concentrations between the two environments.
6.3.3. Summary

The lowest groundwater temperatures and EC were measured at GW9, located 20 m from the Skaftafellsá channel. The highest groundwater EC was measured at the transect (T1, located closest to the river) and GW5. Groundwater solute concentrations substantially exceeded those in the lakes and the meltwater river. The highest groundwater solute concentrations ($\text{Ca}^{2+} + \text{Mg}^{2+}$ and SO_4^{2-}) were generally measured in the transect. However, a considerable spatial variability was also observed in this area, with the lowest solute concentrations (and smallest temporal variability) found in T3 and highest at T1 (furthest and nearest the river, respectively). The highest $\text{Na}^+ + \text{K}^+$ at the study were measured at the IL groundwater and T3.
6.4. Spatial and temporal variability in surface water quality and geochemistry

This section describes the spatial and temporal variability in surface water physicochemical parameters and solute concentrations. Surface water samples were collected from the Skæftafellsá, Northern Oasis lakes, and Southern Oasis lakes (Figure 6.3). The samples were collected during four sampling intervals, which took place around the 10/07/2012, 21/07/2012, 30/07/2012, and 25/08/2012 (Figure 6.4). The mean surface water concentrations of SO$_4^{2-}$, Ca$^{2+}$ + Mg$^{2+}$, and Na$^+$ + K$^+$ were generally lower than groundwater concentrations. Conversely, Cl$^-$ concentrations was higher than mean groundwater concentrations (Figure 6.7)

Considerable spatial variability in surface water quality and solute concentrations has been observed between the different hydrological environments of the Skæftafellsjökull foreland. The lowest temperature and variability (~1°C) in surface water were measured in the meltwater river Skæftafellsá. The highest surface water temperatures were measured in the Northern Oasis lakes (14.4-17.7°C). During the last measurement campaign (end of August 2012), temperatures in the Southern Oasis lakes substantially fell by 3-10 °C. The lowest surface water EC was measured in the Skæftafellsá (~30 μS/cm) and the Northern Oasis lakes (~50-70 μS/cm). The EC in the Southern Oasis lakes ranged between ~100-150 μS/cm. Within the Southern Oasis lakes, the highest temporal variability in EC was observed at the IL and Swan Lake, where EC fell by approximately 30 μS/cm in August (Figure 6.6)

The lowest mean Cl$^-$ (34 μeq/l), SO$_4^{2-}$ (15 μeq/l), Ca$^{2+}$ + Mg$^{2+}$ (91 μeq/l) and Na$^+$ + K$^+$ (120 μeq/l) concentrations and variability were also measured in the Skæftafellsá. After the Skæftafellsá, the Northern Oasis lakes had the lowest SO$_4^{2-}$ (<30 μeq/l), Ca$^{2+}$ + Mg$^{2+}$ (<500 μeq/l), and Na$^+$ + K$^+$ (<250 μeq/l) concentrations. However, Cl$^-$ concentrations in the Northern Oasis lakes were significantly higher than in the Southern Oasis lakes (one tail t
test, 2.5% S.L. \(p=0.999 \). Conversely, \(\text{SO}_4^{2-} \), \(\text{Ca}^{2+} + \text{Mg}^{2+} \), and \(\text{Na}^+ + \text{K}^+ \) concentrations in the Southern Oasis were significantly higher \((1 \text{ tail t test, 2.5\% SL, } p<0.001)\) than the concentrations in the Northern Oasis lakes (Figure 6.8-6.10).

The highest solute concentrations and variability in surface water geochemistry were measured at the Southern Oasis lakes. The highest \(\text{SO}_4^{2-} \) surface water concentrations \((\sim 100-120 \text{ µeq/l})\) were measured at Thin Lake, where \(\text{Cl}^- \) and \(\text{SO}_4^{2-} \) concentrations approached groundwater concentrations from the fine-grained (L5, L6, CN) lakeshore of the IL (Figure 6.8). Similar to the decline in groundwater \(\text{Cl}^- \) and \(\text{SO}_4^{2-} \) around the IL in August, the concentrations of these solutes also fell at Thin Lake (Figure 6.16). The highest \(\text{Ca}^{2+} + \text{Mg}^{2+} \) \((\sim 1550 \text{ µeq/l})\), \(\text{Cl}^- \) \((\sim 170 \text{ µeq/l})\), and \(\text{Na}^+ + \text{K}^+ \) \((\sim 430 \text{ µeq/l})\) concentrations in the Southern Oasis were measured at Heart Lake. \(\text{Cl}^- \) concentrations at Heart Lake exceeded those measured in most groundwater samples (Figure 6.8). The variability in \(\text{Cl}^- \) and \(\text{SO}_4^{2-} \) concentrations at the IL and Swan Lake generally exceeded that of Heart, Thin and Island Lakes (Figure 6.16). The \(\text{Cl}^- \) and \(\text{SO}_4^{2-} \) concentrations at Swan Lake ranged between 60-155 \text{ µeq/l} and 36-61 \text{ µeq/l}, respectively. The \(\text{Na}^+ + \text{K}^+ \) concentrations at the IL were \(\sim 400 \text{ µeq/l} \). These concentrations were similar to those in Thin and Island Lakes, and are slightly higher than those in Swan Lake (Figure 6.10).

\(\text{Ca}^{2+} + \text{Mg}^{2+} \) concentration in the Southern Oasis lakes showed high spatial variability (Figure 6.9). The highest \(\text{Ca}^{2+} + \text{Mg}^{2+} \) concentrations \((\sim 1500 \text{ µeq/l})\) were measured at Heart Lake, followed by Thin and Island Lakes \((\sim 1000-1200 \text{ µeq/l})\). These lakes also had smaller variability in \(\text{Cl}^- \) and \(\text{SO}_4^{2-} \) concentrations (Figure 6.8). Conversely, \(\text{Ca}^{2+} + \text{Mg}^{2+} \) concentrations at the IL and Swan Lake were much lower \((\sim 600-900 \text{ µeq/l})\) (Table 6.4).
Chapter 6
Geochemistry and stable isotopes

Table 6.4. Mean solute concentrations and physicochemical parameters in different surface water bodies at the Skaftafellsjökull foreland.

The numbers in brackets denote the number of samples within each environment (Figure 6.3).

<table>
<thead>
<tr>
<th></th>
<th>SO₄²⁻ (µeq/l)</th>
<th>Cl⁻ (µeq/l)</th>
<th>Ca²⁺+ Mg²⁺ (µeq/l)</th>
<th>Na⁺+ K⁺ (µeq/l)</th>
<th>EC (µS/cm)</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>River Skaftafellsá (7)</td>
<td>15±2</td>
<td>34±11</td>
<td>91±37</td>
<td>113±23</td>
<td>23±3</td>
<td>1±0</td>
</tr>
<tr>
<td>N. Oasis lakes (17)</td>
<td>29±12</td>
<td>153±36</td>
<td>285±105</td>
<td>298±167</td>
<td>55±10</td>
<td>16±1</td>
</tr>
<tr>
<td>Southern Oasis lakes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrumented Lake (12)</td>
<td>49±34</td>
<td>104±44</td>
<td>875±69</td>
<td>341±77</td>
<td>107±13</td>
<td>14±3</td>
</tr>
<tr>
<td>Swan lake (12)</td>
<td>46±7</td>
<td>135±35</td>
<td>759±97</td>
<td>315±95</td>
<td>101±16</td>
<td>15±3</td>
</tr>
<tr>
<td>Island Lake (11)</td>
<td>57±15</td>
<td>148±5</td>
<td>1157±124</td>
<td>378±29</td>
<td>125±16</td>
<td>15±3</td>
</tr>
<tr>
<td>Thin Lake (9)</td>
<td>109±7</td>
<td>131±7</td>
<td>1130±37</td>
<td>349±12</td>
<td>116±5</td>
<td>13±4</td>
</tr>
<tr>
<td>Heart Lake (7)</td>
<td>48±6</td>
<td>163±9</td>
<td>1399±234</td>
<td>503±188</td>
<td>141±3</td>
<td>13±2</td>
</tr>
<tr>
<td>GWFS (3)</td>
<td>897±1344</td>
<td>161±28</td>
<td>2519±1887</td>
<td>529±253</td>
<td>231±162</td>
<td>12±2</td>
</tr>
</tbody>
</table>

The temporal variability in surface water solute concentrations is presented in Figure 6.16, Figure 6.17. A considerable variability was observed in surface water concentrations of different solutes between intervals I and II (10/07-21/07/2012). Cl⁻ and SO₄²⁻ concentrations generally fell in all lakes, with the highest falls (84 µeq/l Cl⁻ and 61 µeq/l SO₄²⁻) measured at the IL. The changes in Ca²⁺+ Mg²⁺ concentrations varied, with a fall in Ca²⁺+ Mg²⁺ concentrations at Swan (51 µeq/l) and Thin Lakes (67 µeq/l) and a rise at the IL (52 µeq/l), Island Lake (82 µeq/l), and the Skaftafellsá (30 µeq/l). Na⁺+ K⁺ concentrations have also increased in all lakes except Thin Lake (Figure 6.16, 6.17).

During interval II, hydraulic heads and lake levels at the site rose by ~0.10 m between the 21/07 to the 30/07, coinciding with the season’s highest rainfall event (33 mm on the 23/07/2012). Ca²⁺+ Mg²⁺ concentrations in the IL, Swan and Thin Lakes increased by ~90 µeq/l. Conversely, concentrations fell substantially at Island (~97 µeq/l) and Heart (~284 µeq/l) Lakes. Cl⁻ and SO₄²⁻ concentrations at the IL have also increased. Na⁺+ K⁺ concentrations at Heart Lake substantially increased by 250 µeq/l. Na⁺+ K⁺ concentrations...
at Thin Lake and the IL have increased by 20 µeq/l. Conversely, concentrations at Swan
and Island Lakes fell by ~30 µeq/l Na⁺+ K⁺ (Figure 6.16, 6.17).

The field site was unmanned between 31/07/2012 and 23/08/2012. When monitoring was
resumed, an increase of ~0.010-0.020 m was measured in groundwater and lake levels.
The pressure transducers measured a substantial flood on the 13-14/08/2012, during
which meltwater and hydraulic heads increased by approximately 0.50 m in 10-14 hours.
In addition to the flood, two rainfall events of 20 mm (21/08/2012) and 12 mm
(25/08/2012) also took place during this period. However, despite the flood and rainfall
events, groundwater and lake levels quickly declined at the end of August. The changes in
solute concentrations following these events has shown a considerable spatial variability.
Solute concentrations at the IL and Swan Lake have fallen between intervals III and IV
(Figure 6.16, 6.17). Smaller declines also took place at Thin Lake. Conversely, Ca²⁺+
Mg²⁺ concentrations at Island and Heart Lake have increased by 64 µeq/l and 244 µeq/l,
respectively. SO₄²⁻ concentrations have also increased in these lakes. Na⁺+ K⁺
concentrations at Heart Lake declined by 302 µeq/l (Figure 6.17)
Figure 6.16. Fluctuations in surface water Cl\(^-\) and SO\(_4^{2-}\) concentrations.

Please note the notation for the different hydrological environments: The Southern Oases lakes (diamonds), Northern Oasis lakes (circles), and the meltwater river Skatafellsá (squares). Note that the measurements for the Northern Oasis lakes were only taken during sampling intervals I and II. The figure shows the mean concentration during each interval.
Chapter 6 Geochemistry and stable isotopes

Figure 6.17. Fluctuations in surface water Ca^{2+}, Mg^{2+}, and $\text{Na}^+ + \text{K}^+$ concentrations.

Please note the notation for the different hydrological environments: the Southern Oasis lakes (diamonds), Northern Oasis lakes (circles), and the meltwater river Skaftafellsá (squares). Note that the measurements for the Northern Oasis lakes were only taken during sampling intervals I and II. The figure shows the mean concentration during each interval.

In summary, this section described the spatial and temporal variability in surface water quality and geochemistry at the Skaftafellsjökull foreland. A considerable spatial variability has been observed between the river Skaftafellsá, the Northern Oasis lakes and the Southern Oasis lakes. The river Skaftafellsá had the lowest temperature, EC, and solute concentrations. The EC and solute concentrations at the Northern Oasis lakes was lower and less variable than that of the Southern Oasis lakes. However, Cl^- concentrations were higher in the Northern Oasis lakes. The highest surface water concentrations of SO_4^{2-} were measured at Thin Lake. The highest Cl^-, $\text{Ca}^{2+} + \text{Mg}^{2+}$, and $\text{Na}^+ + \text{K}^+$ were measured at
Chapter 6 Geochemistry and stable isotopes

Heart Lake. Substantial declines in lake water temperature, EC, and solute concentrations were observed at the IL and Swan Lake during the sampling interval at the end of August. Conversely, these parameters have increased in the other lakes at the Southern Oasis.

6.5. The δ\(^{18}\)O and δD composition of groundwater and surface water at the Skaftafellsjökull foreland

6.5.1. Introduction

This section describes the spatial variability in the stable isotope composition of meltwater, groundwater, surface water, and precipitation. A total of 31 stable isotope samples were obtained from various groundwater and surface water locations at the field site: Skaftafellsá (n =6), Southern Oasis lakes (IL=2, Swan Lake=1, Thin Lake=2, Island Lake=2), the Ground Water Fed Stream (n =4) (GWFS), and piezometers (n =15). The piezometers which were sampled are: T1-T3 (transect), GW5 and GW9 (near the river channel), L1-L5 and the piezometer nests (the IL), and GW11, GW12, and P12 (the outwash). The samples were collected on the 24-25/08/2012, hence, after the flood of the Skaftafellsá (Chapter 7). The mean isotopic composition for the different hydrological environments in the Skaftafellsjökull foreland is presented in Table 6.5. The isotopic composition of precipitation, groundwater and surface water at the Skaftafellsjökull foreland is presented in Figure 6.18. The glacial melt end member is composed of the mean δ\(^{18}\)O and δD composition for the Skaftafellsá (current study) and the isotopic composition of glacial ice from Skaftafellsjökull (n=4), which were obtained from Cook et al. (2010). The precipitation data was obtained from Robinson (2003). The rationale for using this data set is provided in section 6.5.2.

The Local Meteoric Water Line (LMWL) at the Skaftafellsjökull foreland plots below the Global Meteoric Water Line (GMWL), but with a slightly steeper slope. The slopes of the
groundwater (6.87) and lakes (6.49) samples are much lower than that of the GMWL. Most of the groundwater, lakes, and the GWFS samples plot on the LMWL, with the isotopic composition ranging between -7.7 to -8.6 δ^{18}O and -41.0 to -59.0 δD. However, several groundwater (GW9, GW5, L2) and surface water samples from the IL and Swan Lake plot further down the LMWL, having a lighter isotopic composition. Conversely, the isotopic composition of the head of the GWFS and Island Lake plots below the LMWL. The glacial melt end-member and samples plot very close to the GMWL (Figure 6.18). Groundwater, lakes and the GWFS samples are significantly more isotopically heavy than those of glacial melt (1 tail t test, 2.5% SL, $p=<0.001$).

Figure 6.18. δD vs δ^{18}O composition of groundwater and surface water at the Skaftafellsjökull foreland.

The GMWL is denoted by the solid black line. The LMWL (dashed line) was calculated from the trend line of the isotopic composition of precipitation (equation shown). The end-member for the isotopic composition precipitation and glacial melt are denoted in yellow.
Table 6.5. Mean isotopic composition of the different hydrological environments at the Skaftafellsjökull foreland.

The number of samples in each environment is in brackets. Full data set is found in Appendix 6.

<table>
<thead>
<tr>
<th>Environment</th>
<th>δ^{18}O (‰)</th>
<th>δD (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glacial melt (10)</td>
<td>-11.24±0.33</td>
<td>-77.9±2.0</td>
</tr>
<tr>
<td>Lake surface water (6)</td>
<td>-7.89±0.90</td>
<td>-58.9±5.9</td>
</tr>
<tr>
<td>Groundwater(15)</td>
<td>-8.03±0.67</td>
<td>-57.8±4.6</td>
</tr>
<tr>
<td>GWFS (4)</td>
<td>-7.25±0.87</td>
<td>-53.6±3.8</td>
</tr>
<tr>
<td>Precipitation (59)</td>
<td>-6.74±2.80</td>
<td>-49.2±24.3</td>
</tr>
</tbody>
</table>

6.5.2. The isotopic composition of precipitation

The reliable determination of the isotopic composition of precipitation and a LMWL requires precipitation samples that span over at least one year (Clark and Fritz, 1997). However, due to logistical constraints, stable isotope samples from local precipitation were not collected during this study. Therefore, in order to define the isotopic composition for precipitation, this study compared the isotopic composition of summer (June-August) precipitation from Skeiðarársandur (Robinson, 2003) with that of summer precipitation from the International Atomic Energy Agency (IAEA) station in Reykjavik, which forms part of the Global Network of Isotopes in Precipitation (GNIP). The isotopic composition of precipitation in Skeiðarársandur was determined from samples that were collected from several field stations during 1998, 2000, and 2001. The stations are located up to 20 km to the NW of the Skaftafellsjökull foreland field site. The IAEA data set contains the mean monthly isotopic composition of precipitation in Reykjavik from the years 1961-1976, 1992-1999, 2000-2006, 2008, and 2009 (IAEA/WMO, 2014).
Figure 6.19. The isotopic composition of summer precipitation from Skeiðarársandur (Robinson 2003) and Reykjavik (IAEA/WMO, 2014).

The figure also shows the LMWL for Reykjavik isotopic composition (red line), the GMWL (bold black line) and the LMWL (black dashed line) for Skeiðarársandur.

The isotopic composition of precipitation from the two data sets is presented in Figure 6.19. The slope of the Reykjavik precipitation LMWL was slightly lower than that of Skeiðarársandur. The intercept of the Reykjavik LMWL was much lower than that of Skeiðarársandur. The LMWL for both Skeiðarársandur and the Reykjavik data deviate from the GMWL along a slightly steeper slope below the GMWL. Table 6.5 shows that the mean isotopic composition for Skeiðarársandur precipitation (-6.74±2.80‰ δ¹⁸O and -49.24±24.27‰ δD) was more isotopically enriched than the Reykjavik precipitation (-7.60±1.35‰ δ¹⁸O and -56.57±11.31‰ δD). However, despite the smaller number of samples and shorter data set, the standard deviation and range for the Skeiðarársandur data is higher than the Reykjavik data (Table 6.5). This suggests that precipitation at the two sites is impacted by different sources (Clark and Fritz, 1997). The high variability in the isotopic composition of precipitation in Skeiðarársandur can also be attributed to the data being collected from field stations, where following all of the IAEA collecting protocols.
was not always possible, making modifications by evaporation and contamination are more likely.

Table 6.6. Summary of the isotopic composition of summer precipitation from Skeiðarársandur (Robinson, 2003) and Reykjavik (IAEA/WMO, 2014).

Note that the Reykjavik data shows the mean monthly isotopic composition.

<table>
<thead>
<tr>
<th></th>
<th>δ¹⁸O (‰)</th>
<th>δD (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skeiðarársandur summer (59)</td>
<td>-6.74± 2.80</td>
<td>-49.24± 24.27</td>
</tr>
<tr>
<td>Reykjavik summer (77)</td>
<td>-7.60± 1.35</td>
<td>-56.57± 11.31</td>
</tr>
</tbody>
</table>

Trend line of the LMWL

<table>
<thead>
<tr>
<th>Slope</th>
<th>8.51</th>
<th>8.07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>8.12</td>
<td>4.74</td>
</tr>
<tr>
<td>R^2</td>
<td>0.964</td>
<td>0.933</td>
</tr>
</tbody>
</table>

Each data set has its merits and limitations for being used for the determination of an end-member isotopic composition for precipitation. The data from Skeiðarársandur provides a better representation for local precipitation at the study site. However, this data is 15 years old and more limited in number. This can be problematic, especially with regards to the high temporal variability of the isotopic composition of precipitation from Skeiðarársandur (Robinson, 2003). On the other hand, the Reykjavik data is more recent (up to 2009) and covers a much longer period than the Skeiðarársandur data. Quality control measures for the Reykjavik data are also assumed to be tighter. However, this data was collected ~350 km from the field site. Additionally, the data from Skeiðarársandur was collected from individual precipitation events, whilst the Reykjavik data shows the mean monthly isotopic composition, which can mask finer temporal variability. Therefore, due to the proximity to the site, and the inclusion of individual events, rather than monthly mean isotopic composition, the isotopic composition of precipitation from Skeiðarársandur (Robinson, 2003) was used in the current study.
6.5.3. **Groundwater isotopic composition**

The spatial distribution of groundwater $\delta^{18}O$ at the Skaftafellsjökull foreland is presented in Figure 6.20. The isotopic composition of groundwater at the Skaftafellsjökull foreland ranged between -10.00% to -7.42% $\delta^{18}O$ and -71.1% to -53.2% δD (Table 6.5). The isotopically lightest groundwater was measured in the piezometers near the river (GW9 and GW5). GW9, which is located 20 m from the Skaftafellsá meltwater channel, has the lightest groundwater isotopic composition, with -10.0% $\delta^{18}O$ and -71.1% δD. The isotopic composition of GW5, located 38 m away from the meltwater channel was slightly heavier (-8.97% $\delta^{18}O$ and -64.5% δD). However, it was still isotopically lighter than other groundwater samples in the catchment. Groundwater isotopic composition from the IL ranged between -7.5% to -8.4% $\delta^{18}O$ and -55.0% to -61.7% δD. The heaviest isotopic composition was measured in L1, which is located in the coarse-grained lakeshore of the IL (-7.52% $\delta^{18}O$ and -55.0% δD). The lightest isotopic composition from the IL groundwater was measured in L2, which is also located in the coarse-grained lakeshore (-8.44% $\delta^{18}O$ and -61.7% δD). However, apart from the L1 and L2, the isotopic composition of groundwater from the remaining piezometers was very similar (approximately -7.9% $\delta^{18}O$ and -56.1% δD). The spatial variability of groundwater isotopic composition in the outwash was smaller than the IL groundwater, with a very narrow range of 0.2% $\delta^{18}O$ and 1.6% δD. Groundwater isotopic composition in the transect ranged between -7.4 to -8.0% $\delta^{18}O$ and -53.2 to -56.5% δD. The lightest isotopic composition in the transect was measured at T2. The heaviest isotopic composition was measured at T1, which is closest to the river (27 m) (Figure 6.20).
Figure 6.20. Spatial variability of δ18O in groundwater and surface water at the Skaftafellsjökull foreland.

The sampling locations around the IL are included in detail in inset B (black dashed box). The image was taken from Vatnajökull National Park (2007). The Skaftafellsá meltwater channel has changed its location since the image was taken. The location of the meltwater channel when the samples were collected (August 2012) is denoted by the dashed blue line.

6.5.4. The isotopic composition of surface water

Substantial heterogeneity has been observed in the isotopic composition of surface water at the Skaftafellsjökull foreland (Figure 6.20, 6.21). The isotopic composition of surface water ranged between -5.9 to -11.9‰ ± 1.44‰ δ18O and -48.0 to -80.4± 9.40‰ δD. The river Skaftafellsá (n=6) had the most depleted isotopic composition (-11.06 ± 0.06 δ18O and -78.3 ± 0.4 δD‰) and the lowest standard deviation. The isotopic composition of lake surface water (n=6) ranged between -8.64 and -6.28‰ δ18O and -64.1 to -49.3‰ δD. The mean δ18O and δD for lake surface water was similar to that of groundwater (-8.00±0.90 ‰ δ18O and -58.5±5.9 ‰ δD). However, the standard deviation for groundwater was lower
Chapter 6 Geochemistry and stable isotopes

(Table 6.5). The lightest isotopic composition of lake water was measured in the IL and Swan Lake (approximately -8.5‰ δ¹⁸O and -64‰ δD). The heaviest lake water isotopic composition was measured at Island Lake (-6.3‰ δ¹⁸O and -49.3‰ δD). The isotopic composition of Thin Lake lay between the compositions of Island Lake and the IL (Figure 6.20).

![Figure 6.21. Groundwater and surface water EC vs. δ¹⁸O composition (after Lambs, 2004). Groundwater samples are denoted by the different rectangles.](image)

6.5.5. Spatial variability in Deuterium Excess (d-excess)

The d-excess of groundwater and surface water at the Skaftafellsjökull foreland ranged between -0.39 and +10.60 ‰ (Figure 6.22). The highest values and lowest standard deviation of d-excess were measured in the Skaftafellsá, where values ranged between +9.5 to +10.6 ‰. Groundwater d-excess was generally higher than that of the lakes. However, high variability was measured in groundwater d-excess, where values ranged between +5.1 (L5) to +8.8 ‰ (GW9). Relatively high d-excess, of approximately +7.0‰
was measured in some piezometers in the transect (T2), outwash (GW11), IL (L4), and near the river (GW5). However, the d-excess in other piezometers within these environments were lower (+5.1 to +6.0‰).

The d-excess values of surface water in the Southern Oasis lakes and GWFS (excluding the head of the GWFS) were generally lower (+4.4 to +5.4‰) than groundwater d-excess. However, the d-excess from the middle of the GWFS was +6.6‰. The lowest d-excess values were obtained from Island Lake (+1.0‰) and the head of the GWFS (-0.4‰) (Figure 6.22).

Figure 6.22. The spatial variability of Deuterium Excess (‰) in groundwater and surface water at the Skaftafellsjökull foreland.

The sampling locations from around the IL are included in detail in inset B, whose area is denoted by the black dashed box. The image was taken from LMI (2007). The Skaftafellsá meltwater channel has changed its location since the image was taken. The location of the meltwater channel when the samples were collected (August 2012) is denoted by the dashed blue line.
6.5.6. Summary

The isotopic composition of groundwater at the Skaftafellsjökull foreland ranged between -10.00‰ to -7.42‰ δ¹⁸O and -71.1‰ to -53.2‰ δD. However, considerable spatial variability was observed in the isotopic composition of groundwater in the different hydrological environments. The isotopically lightest groundwater and highest d-excess was measured near the Skaftafellsá (GW9 and GW5). The isotopic composition of groundwater at GW9 was located on the GMWL while groundwater at GW5 was located further down the LMWL than most groundwater samples. The isotopic compositions of groundwater in the outwash, around the IL, and the transect were heavier than that of groundwater near the Skaftafellsá, with most samples located on the LMWL. A considerable variability was also observed in the isotopic composition of surface water. The Skaftafellsá had the most isotopically light composition and highest d-excess. From the Southern Oasis lakes, the IL and Swan Lake had more depleted isotopic compositions than Thin Lake and Island Lake. The head of the GWFS had the most isotopically heavy composition and lowest d-excess. However, apart from the head of the GWFS, the other samples from the GWFS had similar isotopic composition to that of the groundwater around the IL and the surface water of Thin Lake (Figure 6.18).

6.6. Interpretation and discussion

6.6.1. Sources of recharge at the Skaftafellsjökull foreland

Water stable isotopes were used in this study to identify the sources of recharge for groundwater and surface water at the Skaftafellsjökull foreland. Using stable isotopes, local precipitation and glacial melt were previously identified as the main sources of groundwater recharge in Skeiðarársandur, where the impact of glacial melt diminished
with distance away from the glacier margin. However, this pattern was complicated by exchange between groundwater and meltwater rivers (Robinson et al., 2009b). The isotopic composition of groundwater, lakes and the GWFS at the Skálfafellsjökull foreland was significantly heavier than that of glacial melt (one tail t test, 2.5% S.L., p=<0.001). Additionally, the isotopic compositions of most groundwater and lake water samples were located on the LMWL (Figure 6.18). This suggests that local precipitation is the main source of recharge at the areas studied at the Skálfafellsjökull foreland (Clark and Fritz, 1997; Jonsson et al., 2009). Island Lake and the head of the GWFS had the heaviest isotopic composition and lowest d-excess, which suggests that evaporation is significant at these sites. Conversely, the groundwater at GW9 and GW5, located near the Skálfafellsá, had lighter isotopic composition, close to that of glacial melt (Figure 6.20). This relatively light isotopic composition suggests higher proportions of meltwater at GW5 and GW9 (Malard et al., 1999; Chiogna et al., 2014). The isotopic composition of groundwater and meltwater from the Skálfafellsjökull foreland was close to the isotopic composition in Skeiðarársandur (Robinson et al., 2009b). This is probably due to the similar sources of precipitation which impact both areas. The isotopic composition of both sites is generally more enriched than those reported from the Alps (Hindshaw et al., 2011), Alaska (Crossman et al., 2011), Arctic Sweden (Dahlke et al., 2014), Greenland (Kristiansen et al., 2012), Antarctica (Gooseff et al., 2006; 2013), and the Andes (e.g. Ohlanders et al., 2013), where the latitude, altitude and continentality effects are more dominant than in the lowland sandurs of SE Iceland (e.g. Clark and Fritz, 1997).

6.6.2. Controls on groundwater and surface waters geochemistry at the Skálfafellsjökull foreland

This section investigates the major controls on groundwater and surface water geochemistry at the Skálfafellsjökull foreland. Similar to studies from other glacial environments, solute concentrations in groundwater at the Skálfafellsjökull foreland also
generally exceeded those in meltwater (Table 6.7, 6.8). Groundwater solute concentrations in the Skaftafellsjökull foreland generally exceeded those reported from Alaska (Anderson et al., 2000) and the Alps (Tranter et al., 2002; Hindshaw et al., 2011). This can be explained by the wide availability of reactive glassy basalts (e.g. Gislason and Eugster, 1987) in the Skaftafellsjökull foreland in comparison to that in the Alps (Fairchild et al., 1999a, b; Hindshaw et al., 2011). Conversely, groundwater solute concentrations at the Skaftafellsjökull foreland are substantially lower than those reported from Svalbard and Antarctica (Table 6.7). The elevated solute concentrations in these catchments have been attributed to the formation, by evapoconcentration, and dissolution during the melt period, of efflorescent salts (e.g. Wadham et al., 2001). However, these processes do not appear to be significant in SE Iceland, due to the milder temperatures and high and frequent precipitation events (Robinson et al., 2009a).

Volcanic and geothermal activity can also impact groundwater and surface water chemistry at the field sites. Skeiðarársandur is impacted by volcanic eruptions from the subglacial volcanoes beneath Vatnajökull. In addition to their hydrological and geomorphic impacts (e.g. Russell et al., 2006), such as jökulhlaups, these eruptions and associated geothermal systems may also have impacted the geochemistry of groundwater and surface water. For instance, the high concentrations and standard deviation of solute concentrations in eastern Skeiðarársandur groundwater (Table 6.7) and in the River Skeiðará (Table 6.8) suggest that this area is episodically impacted by geothermal water (Robinson et al., 2009a). Additionally, the deposition and subsequent dissolution of volcanic tephra, which weathers very quickly, can also increase solute concentrations in groundwater and surface water (e.g. Galeczka et al., 2014). In contrast to the aforementioned results from areas which are impacted by geothermal activity (e.g. Gislason and Eugster, 1987b; Kristmannsdóttir et al., 2004), the EC, temperature and most solute concentrations of groundwater and surface water at the Skaftafellsjökull foreland are substantially lower (Table 6.7) . Hence, it is suggested that mixing with
Chapter 6
Geochemistry and stable isotopes

geothermal water is probably not an important control on the proglacial geochemistry of groundwater and surface water at the Skaftafellsjökull foreland.

Table 6.7. Solute concentrations in groundwater from various proglacial environments.
The numbers in brackets shows the number of samples.

<table>
<thead>
<tr>
<th>Groundwater solute concentration (µeq/l)</th>
<th>Cl⁻</th>
<th>SO₄²⁻</th>
<th>Na⁺</th>
<th>K⁺</th>
<th>Mg²⁺</th>
<th>Ca²⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skaftafellsjökull groundwater¹ (59)</td>
<td>126±24</td>
<td>166±73</td>
<td>482±169</td>
<td>17±18</td>
<td>153±63</td>
<td>1182±332</td>
</tr>
<tr>
<td>Skeiðarársandur groundwater (West)²</td>
<td>82±40</td>
<td>63±26</td>
<td>224±56</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Skeiðarársandur groundwater (East)²</td>
<td>116±52</td>
<td>301±197</td>
<td>481±134</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lower Skeiðarársandur groundwater²</td>
<td>339±193</td>
<td>114±57</td>
<td>536±144</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>W. Skeiðarár. GW' (2011-12) (20)</td>
<td>153±74</td>
<td>319±573</td>
<td>336±137</td>
<td>8±5</td>
<td>144±163</td>
<td>408±274</td>
</tr>
<tr>
<td>Groundwater seeps W. Skeiðarársandur (2011/12)¹</td>
<td>86±29</td>
<td>54±42</td>
<td>258±41</td>
<td>2±2</td>
<td>132±32</td>
<td>403±80</td>
</tr>
<tr>
<td>Damma Glacier, Swiss Alps³ (12)</td>
<td>98±251</td>
<td>13±7</td>
<td>17±7</td>
<td>25±12</td>
<td>21±15</td>
<td>85±58</td>
</tr>
<tr>
<td>Haut Glacier d’Arolla, Swiss Alps⁴ (17)</td>
<td>7±7</td>
<td>249±160</td>
<td>19±15</td>
<td>24±14</td>
<td>66±37</td>
<td>607±322</td>
</tr>
<tr>
<td>Bench glacier, Alaska⁵ (1)</td>
<td>4</td>
<td>374</td>
<td>21</td>
<td>76</td>
<td>42</td>
<td>1054</td>
</tr>
<tr>
<td>Mittivakkat Gletscher, SE Greenland⁶ (4)</td>
<td>296±103</td>
<td>316±117</td>
<td>358±327</td>
<td>43±11</td>
<td>177±60</td>
<td>241±113</td>
</tr>
<tr>
<td>Finsterwalderbreen Glacier, Svalbard⁷ (60)</td>
<td>200±99</td>
<td>7500±3600</td>
<td>220±91</td>
<td>76±52</td>
<td>3200±1300</td>
<td>6000±2200</td>
</tr>
<tr>
<td>Finsterwalderbreen Glacier, Svalbard⁸ (40)</td>
<td>ND</td>
<td>9890±3490</td>
<td>ND</td>
<td>ND</td>
<td>3980±4360</td>
<td>7109±2650</td>
</tr>
<tr>
<td>Ebba Valley, Central Spitsbergen⁹ (33)</td>
<td>407±190</td>
<td>5501±4081</td>
<td>337±207</td>
<td>56±27</td>
<td>2160±868</td>
<td>7990±3440</td>
</tr>
<tr>
<td>Rieberbreen-Foxfonna catchment, Svalbard¹⁰ (2)</td>
<td>232±18</td>
<td>5423±463</td>
<td>5428±975</td>
<td>102±0</td>
<td>1444±64</td>
<td>2738±385</td>
</tr>
<tr>
<td>Hornsund fjord region, south Spitsbergen, Svalbard¹¹ (7)</td>
<td>1573±1310</td>
<td>781±1114</td>
<td>1693±1532</td>
<td>62±41</td>
<td>1000±905</td>
<td>1122±1081</td>
</tr>
<tr>
<td>Waterloq moraine, Canada² (11)</td>
<td>3361±3172</td>
<td>6355±6163</td>
<td>1888±1031</td>
<td>55±20</td>
<td>3584±2289</td>
<td>7300±4009</td>
</tr>
<tr>
<td>Taylor Valley, Antarctica¹² (9)</td>
<td>4577±3140</td>
<td>1616±1172</td>
<td>3198±1515</td>
<td>537±257</td>
<td>1773±1066</td>
<td>2933±1561</td>
</tr>
</tbody>
</table>

Chapter 6
Geochemistry and stable isotopes

Table 6.8. Solute concentrations in meltwater from different proglacial settings.

The numbers in brackets show the number of samples. However, this was not always available.

<table>
<thead>
<tr>
<th>Meltwater solute concentration (µeq/l)</th>
<th>Cl⁻</th>
<th>SO₄²⁻</th>
<th>Na⁺</th>
<th>K⁺</th>
<th>Mg²⁺</th>
<th>Ca²⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>World average</td>
<td>160</td>
<td>170</td>
<td>220</td>
<td>33</td>
<td>280</td>
<td>670</td>
</tr>
<tr>
<td>'River Sula' (11)</td>
<td>54±12</td>
<td>43±9</td>
<td>275±55</td>
<td>340±67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>River Gigjukvisl (n=8)</td>
<td>39±14</td>
<td>76±51</td>
<td>172±43</td>
<td>322±100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skeiðará (13)</td>
<td>86±36</td>
<td>155±128</td>
<td>565±345</td>
<td>1199±739</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skjáfellsá (7)</td>
<td>34±11</td>
<td>15±2</td>
<td>113±23</td>
<td>0±1</td>
<td>3±4</td>
<td>89±35</td>
</tr>
<tr>
<td>River Virkisá (Iceland)</td>
<td>166</td>
<td>ND</td>
<td>ND</td>
<td>30</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>River Fjallsárlón (S. Iceland)</td>
<td>164</td>
<td>105</td>
<td>66</td>
<td>4</td>
<td>33</td>
<td>320</td>
</tr>
<tr>
<td>Mittivakkat Gletscher meltwater, SE Greenland (16)</td>
<td>40±5</td>
<td>42±6</td>
<td>43±6</td>
<td>7±1</td>
<td>32±6</td>
<td>48±12</td>
</tr>
<tr>
<td>Finsterwalderbreen glacier, Svalbard (40)</td>
<td>319±90</td>
<td>ND</td>
<td>ND</td>
<td>225±42</td>
<td>521±70</td>
<td></td>
</tr>
<tr>
<td>Scott Turnerbreen Svalbard'</td>
<td>390</td>
<td>240</td>
<td>430</td>
<td>12</td>
<td>210</td>
<td>221</td>
</tr>
<tr>
<td>Rieperbreen- Foxonna, Svalbard (7)</td>
<td>54±24</td>
<td>3682±3768</td>
<td>657±333</td>
<td>71±56</td>
<td>905±1200</td>
<td>2224±2182</td>
</tr>
<tr>
<td>Kangerlussuaq region, W. Greenland Glacial rivers Non-glacial rivers</td>
<td>4±1</td>
<td>248±217</td>
<td>30±9</td>
<td>161±209</td>
<td>26±12</td>
<td>261±185</td>
</tr>
<tr>
<td>Kuannersuit, Disko Island, Greenland (10)</td>
<td>25</td>
<td>9</td>
<td>120</td>
<td>2</td>
<td>73</td>
<td>160</td>
</tr>
<tr>
<td>Longyearbreen, Greenland (183)</td>
<td>29±510</td>
<td>350±14900</td>
<td>130±2750</td>
<td>11-66</td>
<td>230-6290</td>
<td>210-6710</td>
</tr>
<tr>
<td>Glacier de Tsanfleuron, Switzerland</td>
<td>5</td>
<td>118</td>
<td>5</td>
<td>6</td>
<td>91</td>
<td>640</td>
</tr>
<tr>
<td>Alps Damma Gletscher, Swiss Alps (39)</td>
<td>3±1</td>
<td>12±6</td>
<td>10±7</td>
<td>10±6</td>
<td>6±4</td>
<td>31±15</td>
</tr>
<tr>
<td>Haut Glacier d’Arolla, Swiss Alps (220)</td>
<td>5±4</td>
<td>135±53</td>
<td>16±4</td>
<td>13±4</td>
<td>37±9</td>
<td>375±165</td>
</tr>
<tr>
<td>Elliott Glacier meltwater Oregon (10)</td>
<td>11±0</td>
<td>52±3</td>
<td>39±4</td>
<td>5±0</td>
<td>43±2</td>
<td>87±4</td>
</tr>
<tr>
<td>Taylor Valley, Antarctica (5)</td>
<td>459±411</td>
<td>325±363</td>
<td>387±263</td>
<td>131±81</td>
<td>274±214</td>
<td>919±709</td>
</tr>
<tr>
<td>Gangotri glacier, Himalayas, India (5)</td>
<td>233±228</td>
<td>674±155</td>
<td>48±17</td>
<td>44±22</td>
<td>1314±620</td>
<td>620±265</td>
</tr>
<tr>
<td>Kennicott Glacier, Alaska (1999 (60) 2000 (93)</td>
<td>36</td>
<td>68</td>
<td>262</td>
<td>63</td>
<td>14</td>
<td>160</td>
</tr>
<tr>
<td>rock glacier outflow, Colorado Rockies (20)</td>
<td>ND</td>
<td>1829</td>
<td>40</td>
<td>ND</td>
<td>329</td>
<td>1487</td>
</tr>
</tbody>
</table>
6.6.3. Spatial and temporal variability in river-aquifer exchange

This section uses the spatial and temporal variability in groundwater and surface geochemistry and stable isotopes to infer proglacial river-aquifer exchange at the Skaftafellsjökull foreland (objective iv). In addition to the monitoring of groundwater and river levels (Chapter 7), river-aquifer exchange can also be investigated using water geochemistry and stable isotopes, with significant differences between groundwater and surface water suggesting low river-aquifer exchange (e.g. Roy and Hayashi, 2009; Dragon et al., 2010). Conversely, rivers and aquifers where high exchange takes place are expected to have similar geochemical and isotopic compositions (Hood and Berner, 2009; Wimpenny et al., 2010; Hindshaw et al., 2011). For instance, the recharge of groundwater by significant fluxes of diluted meltwater will lower groundwater solute concentrations (e.g. Anderson et al., 2003; Okkonen and Kløve, 2012; Carey et al., 2013). The current study used the fluctuations in groundwater and meltwater levels alongside geochemistry and stable isotopes in order to investigate river-aquifer exchange. The measured high variability in groundwater solute concentrations (sections 6.3, 6.4) and stable isotope composition (section 6.5) suggest that high variability in river-aquifer exchange at the Skaftafellsjökull foreland.

The configuration of hydraulic heads and fluctuations at the Skaftafellsá and the transect suggest that groundwater flows away from the river, and that the river is recharging the
Chapter 6 Geochemistry and stable isotopes

groundwater at the transect (i.e. a losing river stretch) (Chapter 7). However, groundwater and meltwater geochemistry and stable isotope compositions do not support this hypothesis. The solute concentrations and isotopic composition of transect groundwater were significantly different than those of the Skaftafellsá. Solute concentrations at the transect were high, particularly at T1, which is located closest to the meltwater channel (Figure 6.8-6.10). Additionally, groundwater at the transect also had heavy isotopic composition (Figure 6.20), which was close to the LMWL (Figure 6.18). The significant differences between groundwater and meltwater geochemistry and isotopic composition do not suggest high levels of exchange between meltwater and groundwater (e.g. Marciniak et al., 2014). Furthermore, the heavy groundwater isotopic composition at the transect (Figure 6.21) suggests that precipitation, rather than glacial melt, is the main source of groundwater recharge at the transect (e.g. Robinson et al., 2009b; Kristiansen et al., 2013).

In contrast to the inferred low river-aquifer exchange at the transect, the water quality and stable isotopes suggest higher river-aquifer exchange at the piezometers located between the Skaftafellsá and Swan Lake (GW9 and GW5). Groundwater at GW9 had low EC (Figure 6.6), low solute concentrations (Figure 6.8-6.10), relatively light isotopic composition (Figure 6.20), and relatively high d-excess (Figure 6.22). These observations suggest that groundwater-meltwater exchange takes place in this piezometer.

Groundwater solute concentrations at GW9 increased substantially in August (Figure 6.11), which coincided with a decline in groundwater and meltwater levels (Chapter 7). This inverse relationship between meltwater levels and groundwater solute concentrations suggests that river stage is an important control on river-aquifer exchange, hence, an increase in river level is expected to lower groundwater solute concentrations due to increased exchange from the river to groundwater, and vice versa. Similar relationships between meltwater levels and solute concentrations have also been reported from various proglacial environments (e.g. Anderson et al., 2003; León and Pedrozo, 2014). Therefore,
the substantial increase in groundwater solute concentrations at GW9 in August (Figure 6.11) which coincided with a fall in river and groundwater levels, suggest a fall in meltwater-aquifer exchange at this site.

Groundwater isotopic composition at GW5, which is located 38 from the Skaftafellsá channel (Figure 6.3), was heavier than GW9, but lighter than the other groundwater samples at the site (Figure 6.20). This suggests that, although GW5 is influenced by meltwater, river-aquifer exchange dampens with distance from the channel (Cooper et al., 2002; 2011). However, in contrast to the low solute concentrations at GW9, groundwater at GW5 had high solute concentrations and EC, particularly in August (Figure 6.6, 6.11). These high solute concentrations at GW5 appear to contradict the hypothesis of exchange with meltwater which is suggested by the stable isotope composition. However, these high solute concentrations could have been possibly caused by local contamination from wildlife or sheep which have been observed near the borehole on numerous occasions. Hence, the isotopic composition of GW5 still supports the hypothesis of meltwater-aquifer exchange at GW5.

The reasons for the spatial variability in meltwater-groundwater exchange between the transect and at GW9 are not clear. The groundwater quality and stable isotope composition at GW9 suggests relatively high proportions of meltwater recharge. However, it is not clear how much of this is due to flooding and localised recharge from overbank flow of meltwater, which is facilitated at this location by the relatively shallow riverbank (0.35 m). Conversely, the river bank at the transect is approximately 1.0 m high, which reduces overland meltwater flow during normal ablation-controlled flow regime. The spatial variability in groundwater-surface water exchange can be investigated further using chemical tracers (e.g. Ward et al., 2013), which can be used to delineate the hydrological pathways of river-aquifer exchange at the site.
6.6.4. Lake-aquifer exchange

In addition to river-aquifer exchange, groundwater and surface water geochemistry was also used to investigate lake-aquifer exchange at the Skaffafellsjökull foreland (objective v). The significant differences in solute concentrations between the lakes in the Northern and Southern Oasis suggest substantial differences in lake-aquifer exchange between the two areas. SO_4^{2-}, $\text{Ca}^{2+}+\text{Mg}^{2+}$, and Na^++K^+ concentrations in the Northern Oasis lakes were significantly lower than concentrations in the Southern Oasis (Figure 6.9, 6.10). Conversely, Cl^- concentrations in the Northern Oasis lakes exceeded those in the Southern Oasis (Figure 6.8). It is suggested that these differences in lake solute concentrations are caused by the contrasting water sources of the lakes, which are controlled by the contrasting hydrogeology between the Northern and Southern Oasis lakes. The hydraulic conductivity of the Northern Oasis lakes is several orders of magnitude lower than that of the Southern Oasis (Figure 5.9). This impedes the connectivity between the Northern Oasis lakes and the aquifer and limits the discharge of solute-rich groundwater into the lakes (Kattlemann and Elder, 1991; Shaw et al., 2013).

In addition to groundwater-surface water exchange, the geochemistry and isotope data also highlighted differences in the hydrological connectivity between the lakes in the Southern Oasis and the Skaffafellsá. Hydrological connectivity describes linkages between and within different components of the hydrological system (e.g. Pringle, 2003; Egozi and Lekach, 2014). The variability in hydrological connectivity at the site was demonstrated by the contrasting impacts of the August flood (13-14/08/2012) on lake water quality in the Southern Oasis. Measurements of lake water physicochemical parameters and solute concentrations which were taken 10 days after the flood have shown a substantial increase in lake turbidity and a fall in lake temperature, EC, and solute concentrations at the IL and Swan Lake (Figure 6.6, 6.16, 6.17). Observations also suggest that fish numbers at the IL have declined after the flood, probably due to the
Chapter 6 Geochemistry and stable isotopes

impact of meltwater on habitat conditions (e.g. Brown et al., 2007a) at the IL. In contrast to the aforementioned impacts of the flood on the IL and Swan Lake, lake temperature, EC, and solute concentrations at Thin, Island, and Heart Lakes either did not change or have risen after the flood (Figure 6.6, 6.16, 6.17). It is hypothesised that the observed changes in water quality at the IL and Swan Lake were probably due to the influx of meltwater during the flood. This hypothesis is also supported by the lighter isotopic composition of the IL and Swan Lake, which were sampled about 12 days after the flood (Figure 6.20). These observations in lake water quality and geochemistry between the IL and Swan Lake and the other lakes suggest that the flood has not impacted the latter lakes. Furthermore, it also suggests that the hydrological connectivity between the river and the IL and Swan Lake is higher than the connectivity between the river and the other lakes.

6.7. Conclusions

This chapter used water quality and stable water isotopes in order to delineate the sources of groundwater and surface water recharge at the Skaftafellsjökull foreland (objective iii). These techniques were also used to investigate the spatial and temporal dynamics of proglacial groundwater-surface water exchange at the site (objective iv and v).

Similar to other proglacial environments, groundwater solute concentrations at the Skaftafellsjökull foreland generally exceeded those in surface water. The main control on solute concentrations at the Skaftafellsjökull foreland is catchment lithology, which is composed of highly soluble basaltic glass. The quick weathering of this lithology at the Skaftafellsjökull foreland contributes to higher groundwater solute concentrations than those reported from some proglacial catchments. However, due to the lack of formation and dissolution of efflorescent salts at the Skaftafellsjökull foreland, groundwater solute concentrations at this catchment were substantially lower than those reported from polar glacial environments. In contrast to eastern Skeiðarársandur, geothermal activity does not
Chapter 6 Geochemistry and stable isotopes

appear to significantly impact groundwater and surface water geochemistry at the Skaftafellsjökull foreland. Using stable isotopes, precipitation was identified as the main source of recharge to groundwater in the catchment. However, recharge from meltwater was also identified in some locations.

Substantial spatial and temporal heterogeneity in groundwater and surface water solute concentrations and stable isotope composition has been observed in the catchment. The high solute concentrations and relatively enriched isotopic composition suggest that river-aquifer exchange at the transect is low. In contrast to the observations from the transect, low solute concentrations and light groundwater isotopic composition near the river (GW9) suggest higher proportions of meltwater, which diminishes with distance from the channel. However, it is not clear whether this meltwater originates from surface recharge during small overbank spills of the river.

The spatial variability in aquifer-lake exchange at the Skaftafellsjökull foreland has been illustrated by the differences in water quality between the Northern and Southern Oasis lakes, with solute concentrations at the Southern Oasis significantly exceeding concentrations in the Northern Oasis lakes. These differences were attributed to the differences in aquifer-lake exchange, which are controlled by the contrasting hydrogeology between the two areas. It is suggested that the low hydraulic conductivity at the Northern Oasis impedes lake-aquifer exchange and the discharge of solute-rich groundwater into the lakes, leading to the lower solute concentrations in this area. In addition to groundwater-surface water exchange, this chapter also suggested high spatial variability in hydrological connectivity, illustrated by the differences in water quality and geochemistry between the Southern Oasis lakes following the Skaftafellsá flood.
Chapter 7 River-Aquifer exchange

7. River-aquifer exchange

7.1. Introduction

This chapter investigates the spatial and temporal variability and controls of proglacial river-aquifer exchange. Hydrological exchange between rivers and groundwater substantially impacts water levels, physicochemical parameters, biogeochemistry, water quality, and ecology (e.g. Brunke and Gonser, 1997; Krause et al., 2009; Hoehn and Maylan, 2009; Roy et al., 2011; Blaen et al., 2013). River-aquifer exchange can exhibit high spatial heterogeneity due to high variability in sediment properties and morphology (e.g. Hannah et al., 2009; Sawyer and Cardenas, 2009; Schmidt et al., 2012; Norman and Cardenas, 2014). These heterogeneities lead to high variability in hydraulic conductivity (e.g. Robinson et al., 2008, MacDonald et al., 2012; Langston et al, 2013), pressure gradients (Stonedahl et al., 2010), and hydrological connectivity (Ward et al., 1999; Storey et al., 2003). The temporal variability in proglacial river-aquifer exchange is impacted by diurnal and seasonal variations in meltwater discharge (e.g. Cooper et al., 2002; Smerdon et al., 2005) and high magnitude, low frequency events such as floods and jökulhlaups (e.g. Cooper et al., 2002; Vogt et al., 2010)

Previous studies of proglacial river-aquifer exchange have focused on groundwater and meltwater hydrochemistry (e.g. Dragon and Marciniak, 2010), catchment hydrology (e.g. Marciniak et al., 2014), and the impact of different water sources on proglacial ecology and biodiversity (e.g. Milner and Petts, 1994; Ward et al., 1999; Tockner et al., 2002; Brown et al., 2006; 2007a, b). However, the processes that control proglacial groundwater flow, storage and exchange with surface water are still not well understood (e.g. Cooper et al., 2002; Crossman et al., 2011; Langston et al., 2011; McClymont et al., 2012).

This chapter aims to investigate the controls on the spatial and temporal variability of proglacial river-aquifer exchange. Section 7.2 describes the spatial and temporal variability in hydraulic heads at the Skaftafellsjökull margin, which were monitored
Chapter 7

River-Aquifer exchange

between 25/06-31/08/2012. The configuration of hydraulic heads was then used to
delineate the proglacial groundwater flow systems at the Skaftafellsjökull foreland, with
groundwater flowing from high to low heads (e.g. Freeze and Cherry, 1979). These results
are added to the configuration of groundwater flow in Skeiðarársandur (Robinson et al.
2008). Section 7.3 investigates the impacts of high frequency, low magnitude processes
(precipitation and ablation) on river-aquifer exchange. This section is based on time series
of meltwater and groundwater levels, temperature, and EC, which were measured at the
Skaftafellsjökull foreland during the 2012 field season. Section 7.4 investigates the
impacts of low frequency, high magnitude events (jökulhlaups) on proglacial river-aquifer
exchange. This section is based on automated measurements of groundwater and
meltwater levels, temperature, and EC, which were taken in western Skeiðarársandur
during the 2011 field season (08/07-15/08/2011). The time series of meltwater and
groundwater levels and physicochemical parameters from the two sites were then used
alongside water geochemistry and stable isotopes composition (Chapter 6) to investigate
the controls on proglacial river-aquifer exchange.

The specific objectives for the chapter are:

1. To delineate the horizontal and vertical groundwater flow directions at the
 Skaftafellsjökull foreland.

2. To analyse the spatial and temporal patterns of proglacial river-aquifer exchange.

3. To analyse the control of low magnitude, high frequency events (precipitation, ablation)
 on proglacial river-aquifer exchange.

4. To analyse the control of episodic (glacial outburst floods) events on proglacial river-
 aquifer exchange.

7.2. Groundwater flow at the Skaftafellsjökull foreland

This section describes the groundwater flow directions and the groundwater flow systems
at the Skaftafellsjökull foreland. Groundwater flow systems can form a nested hierarchy,
Chapter 7

River-Aquifer exchange

with local groundwater flow systems imposed on regional ones (e.g. Tóth, 1963). Observations of nested groundwater flow systems have also been reported from proglacial environments such as Skeiðarársandur (Robinson et al., 2008). The configuration of groundwater systems at the Skaftafellsjökull foreland was derived from the hydraulic heads which were monitored during the 2012 field season (25/06-31/08/2012). Hydraulic heads were calculated from combining the elevation of the piezometer with groundwater levels, which were monitored daily in piezometers in the Southern Oasis (Figure 7.1) using a Solinst acoustic dip meter (accuracy of +0.005 m, section 3.5.3). The spatial distribution of hydraulic heads were then used to delineate groundwater flow system at the site, with groundwater flowing from high to low hydraulic heads (Freeze and Cherry, 1979). This section describes the fluctuations in hydraulic heads in the various hydrological environments at the Skaftafellsjökull foreland, which include the Instrumented Lake (IL) lakeshore, the outwash, and near the Skaftafellsá meltwater channel (GW5 and GW9). The results from the automated monitoring of meltwater and groundwater levels in the transect are presented in section 7.3.
Figure 7.1. Groundwater monitoring infrastructure at the Southern Oasis (Vatnajökull National Park, 2007).

Piezometers (emplaced ~1.6-1.8 m below ground surface) are denoted by black triangles. Note that the Skaftafellsá channel has migrated east since the date of the image (2007). The position of the river (meltwater) channel during the monitoring in June-August 2012 is marked by the dashed blue line. The figure also shows the location of the stilling well (MW) in the meltwater channel and the transect (piezometers T1-T3), where meltwater and groundwater levels, temperature, and EC were automatically monitored (section 7.3).

7.2.1. Hydraulic heads at the Skaftafellsjökull foreland

The fluctuations in hydraulic heads at the Skaftafellsjökull margin during the 2012 field season are presented in Figure 7.2. The fluctuation in hydraulic heads generally followed similar spatial trends across the observation network. Hydraulic heads were stable between 99.50 and 99.70 mAD until the 20/07/2012, when levels rose by approximately 0.05 m. The rise in hydraulic heads followed several small (< 10 mm) precipitation events and an increase of ~0.15 m in river levels (Figure 7.3). Groundwater levels then rose by 0.1-0.15 m in less than 24 hours after the largest precipitation event of the season on the 22/07 (33.3 mm). Following this rainfall event, groundwater levels slowly declined. Manual
monitoring of groundwater levels was not performed between 31/07–23/08/2012. However, a flood was recorded on the 13-14/08/2012, during which groundwater levels have also substantially increased (Figure 7.3). When manual monitoring was resumed on the 23/08/2012, groundwater levels were at their highest levels. Despite minor rainfall events (<10 mm), groundwater levels declined continuously following the flood, reaching similar levels to those measured at the start of the monitoring period. Using the division of hydrogeological environments at the site (Figure 5.4), the remainder of this section describes the spatial and temporal distribution of fluctuations in hydraulic heads at different hydrogeological environments at the Skaftafellsjökull foreland: the outwash, the IL, and near the meltwater channel.

Figure 7.2. Total daily precipitation (IMO, 2013) and elevation of hydraulic heads at the field site.

For clarity, only the mean hydraulic heads are shown for the piezometers located in the coarse (L1-4, L8) and fine shores (L5-L7) of the Instrumented Lake (IL). Dashed lines denote days when measurements were not taken.
The outwash is composed of coarse-grained glaciofluvial deposits, with mean hydraulic conductivity of 6.1×10^1 m/day. However, some areas of the outwash are underlain by finer sediment, such as GW8, which is located in an area of relatively fine lacustrine deposits between the IL and Swan Lake, with hydraulic conductivity of 1.00×10^{-1} m/day. The fluctuations in hydraulic heads in the outwash ranged between 99.45 and 100.24 mAD (Figure 7.3). The highest hydraulic heads at the Skaftafellsjökull foreland were measured at GW10, which is the most northern borehole, located closest to the glacier margin (Figure 7.1). Hydraulic heads at GW10 ranged between 100.00 and 100.24 mAD, persistently exceeding heads in other piezometers by ~0.40-0.50 m. The lowest hydraulic heads, ranging between 99.48 m and 99.60 m, were measured at GW8. Intermediate levels of hydraulic heads were observed at GW11, GW12 and P12, where levels ranged between 99.60 and 99.90 m. GW11 and GW12 displayed very similar dynamics, with levels in GW11 exceeding GW12 by ~0.05 m. However, different dynamics were observed at P12, which is located between GW11 and GW12. For instance, the rise in hydraulic heads at P12 following the rainfall events around the 20/07/2012 was earlier and steeper than the rises in hydraulic heads in other piezometers. Groundwater levels at P12 then declined, and the response of groundwater in this piezometer to rainfall lags behind the main rainfall event and rise in river levels by approximately three days. Additionally, in contrast to the declines which were measured in other piezometers, groundwater levels at P12 also rose by ~0.17 m around 30/07/2012 (Figure 7.3)
Figure 7.3. Total daily precipitation, hydraulic heads at the outwash and mean daily levels of the meltwater river Skáftafellsá.

The data for GW12 was very close to that of GW11 (see text). Hence, it was omitted for clarity. The river levels are based on the daily mean levels, which were monitored automatically (section 7.3).

Figure 7.4 shows the temporal and spatial distribution of hydraulic heads around the IL, which were monitored in the L1-L8 piezometers. The fluctuations in hydraulic heads around the IL (Figure 7.4) generally followed similar patterns to the rest of the site (Figure 7.2). However, spatial heterogeneity was observed around the lake, with hydraulic heads at the fine-grained lakeshore (L5-L7) persistently exceeding hydraulic heads at the coarse-grained (L1-L4, L8) lakeshore by approximately 0.15 m. Hydraulic heads around
the IL ranged between 99.48 and 99.65 mAD until the end of July. The fluctuations in hydraulic heads in all the piezometers were around 0.10 m, with higher fluctuations measured in the fine-grained lakeshore. Hydraulic heads rose gradually following the small rainfall events between 17-22/07/2012. However, the increase in groundwater levels at the fine-grained shore was sharper than the observed rise at the coarse-grained lakeshore (Figure 7.4). Hydraulic heads rose by approximately 0.10 m in less than 24 hours after the rainfall event on the 23/07/2012 (33 mm), with the latest peaks measured in L6 and L7. Hydraulic heads then declined after the rainfall event. Following the small rainfall events (<5 mm) on the 25-27/07/2012, hydraulic heads in the fine-grained shore rose by approximately 0.05 m. Conversely, hydraulic heads at the coarse-grained shore remained at similar levels. Groundwater levels then declined until the end of 31/07/2012, when manual monitoring ceased for approximately three weeks. When manual monitoring was resumed on the 23/08/2012, hydraulic heads were at their highest levels, approximately 0.20 m higher than the measurements prior to the break in monitoring. However, despite a total of 38.3 mm of rainfall during the second monitoring period (23-31/08) hydraulic heads around the IL declined rapidly (Figure 7.4), following the same trends as the rest of the piezometers at the site (Figure 7.2). By the end of the monitoring (31/08/2012), hydraulic heads around the IL have reached similar levels to those measured at the start of the season (Figure 7.4).
Hydraulic heads were also monitored near the Skaftafellsá meltwater channel, at piezometers GW5 and GW9 (Figure 7.5), which are located 20 m (GW9) and 38 m (GW5) away from the channel (Figure 7.1). The hydraulic heads near the Skaftafellsá channel generally followed similar dynamics to those in the outwash and around the IL (Figure 7.2). Hydraulic heads near the Skaftafellsá were around 99.60 mAD until the 22/07/2012. Following the rainfall between 20-23/07/2012, hydraulic heads then rose by approximately 0.15 m. Hydraulic heads then declined by ~0.10 m around the 31/07/2012. When manual monitoring was resumed on the 23/08/2012, hydraulic heads at GW5 and GW9 were approximately 0.20 m higher than the levels at the end of July. The hydraulic heads at GW9 were generally 0.02-0.04 m higher than those at GW5, which suggests that groundwater flows away from the river. Figure 7.5 shows that groundwater levels followed the fluctuations in meltwater levels, albeit with a time lag. This suggests groundwater
recharge by meltwater. This hypothesis is also supported by the low groundwater water temperature, EC, and solute concentrations (Figure 6.6, 6.8-6.10), and relatively depleted δD and δ¹⁸O isotopic composition (Figure 6.20). However, the entrance of meltwater into the aquifer can also be caused by overbank flow from the river (which has been observed during the season). Furthermore, disturbance of substrate near the piezometer can possibly serve as a preferential flow path for groundwater recharge.

Figure 7.5. Daily mean river level and hydraulic heads (mAD) near the meltwater channel (GWS and GW9).

The daily mean river levels were calculated from the automated river level data. Dashed lines denote days when manual measurements were not taken.
7.2.2. Vertical groundwater flow

The direction of vertical groundwater flow determines whether groundwater is discharging (upward flow) or recharging (downward flow), which is important when investigating groundwater-surface water exchange. Vertical groundwater flow can be inferred from hydraulic heads in piezometer nests in which the piezometers are open to the aquifer at different depths. A zone of groundwater discharge (upward groundwater flow) is defined where hydraulic head increases with depth. Conversely, a recharge zone (downward groundwater flow) is defined where hydraulic head decreases with depth. When the difference in water levels was less than two centimetres, a horizontal flow direction was inferred, in order to compensate for measurement errors (Drexler et al., 1999). Similar configurations and classifications have been used previously in various hydrogeological investigations, including proglacial environments (Robinson et al., 2008).

Vertical groundwater flow at the Skaftafellsjökull foreland was determined from hydraulic heads in piezometer nests, which are open to the aquifer at different depths (0.50, 1.00, and 1.50 m below ground). The two piezometer nests were located in the fine-grained (CN) lakeshore and the coarse (SN) lakeshore of the IL (Figure 7.1). Hydraulic heads in the piezometer nests were measured during the same time intervals as the other manual measurements of hydraulic heads.

The mean hydraulic heads at each piezometer were then used to infer the vertical groundwater flow direction in each nest. The results show groundwater discharge at all depths at the coarse-grained shore. In contrast, the results from the clay nest show downward groundwater flow in the deeper piezometers (100 and 150 cm) and groundwater discharge in the shallower piezometers (100 and 50 cm) (Figure 7.6).
7.2.3. Configuration of proglacial groundwater flow at the Skaftafellsjökull foreland

Groundwater flow systems can be divided into regional, intermediate, and local flow systems. Regional groundwater flow systems generally discharge into large water bodies such as the ocean and major river and lakes. Conversely, local groundwater systems flow to a nearby discharge location, such as lakes and streams (e.g. Tóth, 1963). The patterns and configuration of proglacial groundwater flow at the Skaftafellsjökull foreland (Figure 7.7) was inferred from the spatial distribution in hydraulic heads with groundwater flowing from high to low hydraulic heads (e.g. Freeze and Cherry, 1979).

The highest hydraulic heads were observed at GW10, which is the most northern piezometer in the monitoring network. Therefore, groundwater at the site flow from north to south, away from the glacier margin (Figure 7.7A). Similar patterns of groundwater flow away from the glacier margin have also been reported from alpine glaciers (e.g. Gremaud and Goldscheider, 2010) and proglacial outwash plains (Bahr, 1997; Robinson et al., 2008). However, the hydraulic gradient at the site is shallow, as the difference in hydraulic heads is small.
head between GW10 and GW8 is only 0.59 mAD (Figure 7.7). In addition to the regional groundwater flow, a local groundwater flow system, which is imposed on the regional groundwater flow system, has also been identified (e.g. Tóth, 1963; Robinson et al., 2008). This system was identified at the transect, where groundwater flow from the Skáftafellsá towards the IL (west-east) (Figure 7.7B). The system seems to be controlled by river-groundwater interactions and moraines, which have been reported to impact groundwater-surface water exchange in various proglacial settings (e.g. Clow et al., 2003; Roy and Hayashi 2008; 2009; Cooper et al., 2011).

Figure 7.7. Regional groundwater flow systems at the Skáftafellssjökull foreland.

Hydraulic heads (mAD) are denoted in white. Regional groundwater flow is denoted by the solid black arrow. Local groundwater flow systems are denoted by the dashed black arrows. Note that the Skáftafellsá channel has migrated east since the date of the image (2007). The position of the channel during the monitoring in June-August 2012 is marked by the dashed blue line. The image was taken from Vatnajökull National Park (2007).
7.2.4. Summary

Hydraulic heads generally followed similar patterns across the site. Hydraulic heads responded to precipitation, with heads increasing following the highest rainfall event during the field season (33 mm) on the 23/07/2012. Most hydraulic heads were at their highest levels when monitoring was resumed on the 23/08/2012. However, hydraulic heads quickly declined between the resuming and the end of monitoring (31/08/2012) (Figure 7.2). Vertical groundwater flow at the site was investigated in two piezometer nests, which were located in the eastern (fine-grained) and western (coarse-grained) lakeshore of the IL. The nest in the coarse-grained shore has shown upward flow in all depths. The nest in the fine-grained has shown upward flow at the shallower depths (0.50-1.00 m) and downward flow at the deeper depths (1.00-1.50 m) (Figure 7.6). The regional groundwater flow system at the site is from north to south, away from the glacier margin. This configuration is consistent with observations from various proglacial settings. However, a local groundwater flow system, which flows between the Skaftafellsá and the IL, has also been identified (Figure 7.7).

7.3. The impact of high frequency, low magnitude processes on proglacial river-aquifer exchange

This section investigates the impact of high frequency, low magnitude events (precipitation and ablation) on proglacial river-aquifer exchange. These impacts were investigated using time series of hourly meltwater (section 7.2.1) and groundwater levels (section 7.2.2.), temperature (section 7.2.3), and EC (section 7.2.4.), which were automatically monitored at the transect (T1-T3) between 18/06/2012-31/08/2012. The piezometers’ depths were between 1.6-1.8 m below ground level, in an area underlain by coarse glaciofluvial deposits. T1 is located closest to the meltwater channel (27 m) while
T3 is the furthest (69 m). Meltwater level, temperature, and EC were monitored in a stilling well, which is located approximately 20 m downstream of the western section of the breached moraine (Figure 7.1). The mean level, temperature, and EC for groundwater and meltwater are presented in Table 7.1.

Table 7.1. Mean groundwater and meltwater levels, temperature and EC at the Skaftafellsjökull foreland and western Skeiðarársandur.

<table>
<thead>
<tr>
<th>Location</th>
<th>Level (mAD)</th>
<th>Temperature (°C)</th>
<th>EC (μS/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skaftafellsjökull foreland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>99.74±0.12</td>
<td>8.05±0.88</td>
<td>135±14</td>
</tr>
<tr>
<td>T2</td>
<td>99.70±0.13</td>
<td>8.74±0.53</td>
<td>112±12</td>
</tr>
<tr>
<td>T3</td>
<td>99.65±0.14</td>
<td>7.18±0.51</td>
<td>140±28</td>
</tr>
<tr>
<td>Skaftafellsá</td>
<td>99.76±0.15</td>
<td>0.53±0.24</td>
<td>4±2</td>
</tr>
<tr>
<td>Skeiðarársandur</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW4</td>
<td>57.31±0.07</td>
<td>5.16±0.53</td>
<td>175±30</td>
</tr>
<tr>
<td>Súla-Núpsvötn (from the IMO, 2013)</td>
<td>58.91±0.34</td>
<td>1.87±1.24</td>
<td>39±14</td>
</tr>
</tbody>
</table>

7.3.1. Temporal variability in meltwater levels

Groundwater-surface water exchange between the Skaftafellsá meltwater river and the aquifer was investigated by automated monitoring of meltwater levels and hydraulic heads in a transect of piezometers (T1-T3) (Figure 7.1). Similar configurations for the monitoring of proglacial river-aquifer exchange have been previously used in other proglacial environments (e.g. Cooper et al., 2002; Magnusson et al., 2014). The fluctuation in meltwater levels and hydraulic heads at the transect during the 2012 field season is shown in Figure 7.8, where the time series was divided into four intervals (I-1 to I-4).

I-1- This interval was mainly dominated by high frequency, low magnitude ablation-controlled diurnal variability, in which the Skaftafellsá levels displayed clear diurnal oscillations in response to changes in ablation. The river stage is increasing during the
In the first few days of monitoring, following small rainfall events of approximately 10 mm, meltwater levels then stabilised around 99.62 mAD on the 01/07/2012.

I-2- This interval began with rising river levels on the 04/07/2012, during which meltwater levels rose by approximately 0.25 m. Air temperatures during this increase, rising from approximately 10 °C to 16 °C. River levels continued to rise by 0.12 m, reaching peak levels of 99.86 mAD on the 09/07/2012. The latter peak was followed by further increase of ~4 °C in air temperature, reaching 21.5 °C. However, no rainfall was measured during the rise in meltwater levels that took place between the 03-09/07/2012 (Figure 7.8). River levels stabilised and then fell to approximately 99.50 mAD on the 16/07/2012. The remainder of this interval was dominated by ablation-controlled diurnal flow regime, although an increase of approximately 0.15 m in river levels is observed around the 23/07/2012. This increase coincided with 40 mm of rainfall, which fell between 19-23/07/2012, including the season’s highest event (33 mm on the 23/07/2012). River levels then fell by approximately 0.10 m and then rose by the same level between 25-30/07/2012. The river then followed an ablation-controlled flow regime between 30/07-06/08/2012. Meltwater levels then increase continuously, with the initial increases in meltwater levels on the 06-08/08/2012 associated with an increase of approximately 4.0 °C in air temperatures. However, meltwater levels continued to rise until the end of the interval despite a fall in air temperature. Meltwater levels were at 99.91 mAD at the end of the interval (Figure 7.8).

I-3- This interval was marked by a substantial flood event, which starts on 1300 hours, 13/08/2012 and peaked on 1700 hours,14/08/2012. River levels rose by approximately 0.35 m in 34 hours during this event, peaking at 100.162 mAD. Meltwater levels declined by approximately 0.10 m after the flood, and then fluctuated diurnally until the 21/08/2012. The flood was not associated with major rainfall events nor abnormally high air temperature (maximum of 19 °C) (Figure 7.8).
I-4- This interval was dominated by a quick, continuous recession in river levels from the 21/08/2012 until the end of the monitoring period (31/08/2012). The decline in river levels was also supported by field observations of falling meltwater levels and the exposure of a gravel bar in the channel. During interval 4, river levels declined by approximately 0.65 m, reaching a minimum of 99.40 mAD at the end of the monitoring season (Figure 7.8).

![Figure 7.8. Hourly mean meltwater, river levels and hydraulic heads for the transect.](image)

The Figure also shows total daily precipitation and mean air temperature during the study period (IMO, 2013). I1-I4 denote the four intervals to which the time series was divided (see text). The increase in meltwater levels around the 01/08/2012 is possibly due to the changing of the pressure transducer.

7.3.2. Temporal variability in hydraulic heads at the transect

The fluctuations in hydraulic heads at the transect are presented in Figure 7.8. With the exception of approximately 10 hours during the flood event (interval 3, Figure 7.8), hydraulic heads at T1 were the highest, followed by T2 and T3. Figure 7.8 shows that hydraulic heads respond closely to fluctuations in meltwater levels, with hydraulic heads...
generally showing a dampened pattern of the fluctuations in meltwater levels during
intervals 1 and 2. Hydraulic heads gradually rose from approximately 99.35 mAD (T3) and
99.50 mAD (T1) to 99.55 mAD (T3) and 99.75 mAD (T1) at the end of interval 2.
Groundwater and river levels rose substantially during the flood in Interval 3, with
hydraulic heads rising by 0.40 m in approximately 27 hours. However, the rise in hydraulic
heads lagged behind the rise in river levels by approximately 15-20 hours (Figure 7.8).
The differences in hydraulic heads between the piezometers reduced to less than 0.05 m
during the flood and the initial hours of recession. This included a brief period of
groundwater flow reversal, where groundwater was flowing from T3 towards the river.
Following the flood, river and groundwater levels have fallen by approximately 0.20 m until
the end of Interval 3 on the 20/08/2012. Groundwater rose by approximately 0.15 m in the
beginning of interval 4, following a similar rise in river levels. However, after this short
increase meltwater and groundwater levels have declined continuously, with hydraulic
heads falling by approximately 0.50 m since the start of interval 4. The head difference
between the piezometers reduced to less than 0.02 m, although hydraulic heads at T1
remained the highest (Figure 7.8).
The fluctuations in hydraulic heads T1-T3 followed the general patterns of meltwater
levels, albeit with a time lag, with the signal of meltwater fluctuations generally dampening
with distance from the river channel (Figure 7.8). However, considerable spatial variability
of the dampening of the meltwater signal has been observed between the three
piezometers. Although T2 is located further (54 m) from the meltwater channel than T1
(27 m), the dampening of meltwater signal at T2 was smaller than at T1. The largest
attenuation of the meltwater level signal was observed was T3, 69 m away from the river
channel. Additionally, the longest lag time between meltwater and hydraulic heads and the
smallest diurnal fluctuations were also observed at T3 (Figure 7.8). These observations
suggest that meltwater levels are an important control on hydraulic heads in the transect.
The attenuation of the meltwater signal was investigated using Cross Correlation Function (CCF) analysis, which were calculated using the program R. The CCF shows the interrelationship between the input and output series, where the delay between the maximum CCF and the time lag when the lag equal 0 shows the stress transfer velocity of the system. This can then be used to determine the lag time between two time series (Lee and Lee, 2000). CCF have been previously used in various hydrological environments for the analysis of hydrological time series (e.g. Panagopoulos and Lambrakis, 2006; Hannah et al., 2009; Krause et al., 2011b; Zhang et al., 2013). The CCF was used in the current study to show the lag time between meltwater levels and hydraulic heads in the transect. The different lag times between meltwater levels and hydraulic heads in each borehole (Table 7.2) also support the hypothesis of spatial heterogeneity in the coupling between river levels and hydraulic heads (Figure 7.8), with the lowest and highest lag time between meltwater levels and hydraulic heads measured at T2 and T3, respectively.

Table 7.2. Lag time (in hours) between meltwater river levels and hydraulic head at the transect.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Lag time of hydraulic heads from meltwater levels (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 hydraulic heads (27 m away from channel)</td>
<td>-6</td>
</tr>
<tr>
<td>T2 hydraulic heads</td>
<td>-4</td>
</tr>
<tr>
<td>T3 hydraulic heads (54 m)</td>
<td>-10</td>
</tr>
</tbody>
</table>

7.3.3. Fluctuations in groundwater and meltwater temperature

Groundwater and meltwater temperatures were automatically monitored in the same time intervals as water levels in the Skaftafellsá and the transect (Figure 7.9). The lowest and least variable water temperatures were measured in the river Skaftafellsá, which is mainly fed by icemelt from the Skaftafellsjökull glacier (Figure 7.1). The mean river temperature
during the study was 0.53±0.24°C. The diurnal fluctuations in meltwater temperatures were around 0.2-0.4°C. The highest mean groundwater temperatures were observed at T2, with the lowest mean temperatures and standard deviation measured at T3 (Table 7.1). However, the maximum groundwater temperatures were also measured at T3, during the flood. Groundwater temperatures in all three piezometers generally increased during the 2012 field season, with the highest temperatures generally measured during Interval 4 (Figure 7.9).

Figure 7.9. Mean hourly meltwater, groundwater (T1-T3), and air temperature 21/06-31/08/2012.

Note that the time series for T2 starts on the 26/06/12. Note also the different scale for air temperature. Air temperatures was obtained from the Skaftafell met. Station (IMO, 2013).

Groundwater temperature at T1 varied between 6.8 and 9.3 °C, with temperatures rising during the field season (Figure 7.10). Hydraulic heads at T1 generally followed the oscillations in meltwater levels between 25/06-01/07/2012 (Figure 7.8). However, the fluctuations in groundwater temperatures during this period were negligible. Following the small falls in river and groundwater levels (02/07-08/07/2012), groundwater temperatures
slowly rose by approximately 1.0 °C. Groundwater temperatures generally showed inverse dynamics to the oscillations in river levels, with groundwater temperatures rising (falling) when river levels fall (rise) (Figure 7.10). Groundwater temperatures rose from 7.5 to 9.0 °C during interval 2. The oscillations in groundwater temperatures at T1 became negligible when river and groundwater levels rose after 06/08/2012. Groundwater temperatures were highest during the flood (~9.6°C), which was followed by a fall of 0.8°C after the flood (interval 3, Figure 7.10). Groundwater temperatures remained around 8.8 °C between the end of the flood and the end of interval 3 (14/08-20/08/2012). Groundwater temperatures varied between 9.0-9.4 °C during interval 4, following the recession in meltwater and groundwater levels. Apart from the short increase in groundwater temperature during the flood, the highest groundwater temperatures at T1 were measured during interval 4 (Figure 7.10).

![Figure 7.10. Mean hourly meltwater river level and groundwater levels and temperature at T1 during the 2012 field season.](image)

Groundwater temperatures at T2 rose from 7.5°C at the start of monitoring to 9.2 °C at the end of the monitoring. Groundwater temperatures at T2 were opposite to the fluctuations
in meltwater and groundwater levels, with fall (rise) in water level followed by a rise (fall) in groundwater temperatures (Figure 7.11). Groundwater temperatures at T2 rose by approximately 1.0 °C at the start of interval 1. Groundwater temperatures then fell by approximately 0.65 °C at the beginning of interval 2, following the increase in meltwater and hydraulic heads. Groundwater temperatures then rose back to 8.3 °C following the fall in water levels. T2 was the only piezometer where groundwater temperatures fell during the flood, with temperatures decreasing by 0.3°C (Figure 7.11). Groundwater temperatures recovered within 16 hours after the flood. Groundwater temperatures at T2 oscillated around 9.5 °C after the flood. However, the oscillations in groundwater temperature at T2 during Interval 4 were smaller than those observed prior to the flood (Figure 7.11).

Figure 7.11. Mean hourly meltwater river level and groundwater levels and temperature at T2 during the 2012 field season.

The smallest variability and lowest groundwater temperatures were measured at T3 (Figure 7.9). However, outliers of maximum temperatures have been recorded in this
piezometer during the flood (Figure 7.10). Similar to T1, groundwater temperatures at T3 also increased over the season. However, in contrast to the notable fluctuations of groundwater temperatures and levels at T1 and T2, the coupling between fluctuations in groundwater temperatures and levels at T3 was very small (Figure 7.12). Groundwater temperatures at T3 were approximately 6.3 °C at the start of interval 1. Temperatures then gradually increased, which coincided with a fall in meltwater levels, around the 29/06/2012, reaching 6.75 °C by the end of the interval. Groundwater temperatures at T3 rose by approximately 1.0°C between the start of interval 2 and the 30/07/2012, when temperature fell by approximately 0.65 °C when the pressure transducer was exchanged with the transducer in the Skaftafellsá. Following this drop in temperature, groundwater temperatures gradually rose, reaching 7.43 °C during the flood. Temperatures then dropped after approximately 20 hours from the start of the flood. Groundwater temperatures remained around 7.61 °C until the end of interval 3. During interval 4, the oscillations in groundwater temperature increase towards the end of measurements (Figure 7.12).

Figure 7.12 Mean hourly meltwater river level and groundwater levels and temperature at T3 during the 2012 field season.
7.3.4. Fluctuations in groundwater and meltwater EC

The fluctuations in groundwater and meltwater EC during the 2012 field season are presented in Figure 7.13. The mean groundwater EC in all three piezometers is significantly different (5% confidence level, 2 tail test, $p=0.001$) than the mean EC of meltwater. Similar to observations from other proglacial environments (e.g. Robinson et al., 2009a), meltwater EC at the Skaftafellsá was also the lowest and least varied.

Meltwater EC fluctuated between 1 and 8 μS/cm, with no notable impact of fluctuations in river levels on EC. However, the meltwater EC time series ends on the 30/07/2012, when the pressure transducer at the stilling well was exchanged with the transducer at T3 (hence the start of the EC measurements at T3 on that date). The pressure transducer which was used in the Skaftafellsá from 30/07/2012 only measured water level and temperature, hence, the impact of the flood in August on meltwater EC is unknown.

![Figure 7.13. Meltwater and groundwater EC at the Skaftafellsá and the transect.](image)

EC was monitored hourly between 28/06-29/08/2012. Meltwater EC was only measured between 26/06-30/07/2012. EC at T3 was only measured between 30/07-29/08/2012.
Groundwater EC was only measured at T1 and T2 before the 30/07/2012. During this time, EC at T1 exceeded EC at T2 by approximately 30 μS/cm. However, groundwater EC at T3 were the highest, exceeding groundwater EC at T1 by approximately 25 μS/cm between 30/07/2012 and the end of Interval 2 (Figure 7.13). Groundwater EC at T1 was approximately 130 μS/cm during intervals 1 and 2, with fluctuations of up to 15 μS/cm (Figure 7.14). EC at T1 was around 140 μS/cm at the beginning of interval 3. During the flood, EC has risen to 155 μS/cm in 14 hours. However, EC fell back to 140 μS/cm within 30 hours. Following the flood, EC rose by approximately 10 μS/cm, peaking at 158 μS/cm at the end of interval 3. During interval 4, EC fell by approximately 15 μS/cm on the 26/08/2012 and then rose back to 160 μS/cm (Figure 7.14).

![Figure 7.14. Meltwater river level, hydraulic head, and groundwater EC at T1.](image)

Groundwater EC at T2 fluctuated between 95 and 130 μS/cm (Figure 7.15). The lowest mean and smallest variability in groundwater EC were measured at T2 (Table 7.1). Groundwater EC fell by about 10 μS/cm between the start of measurements and the end
of interval 1. EC gradually rose during interval 2, reaching 125 μS/cm around the 02/08/2012. However, the fluctuations in EC were inverse to those in meltwater levels and hydraulic heads, with EC rising (falling) during fall (rise) in meltwater levels (Figure 7.15). During the gradual rise in meltwater levels at the end of interval 2, EC remained around 125 μS/cm. The impact of the flood during interval 3 on groundwater EC at T2 was negligible. Following the flood, groundwater EC at T2 remained around 120 μS/cm until the end of interval 3. Groundwater EC at T2 rose during interval 4, reaching 133 μS/cm by the end of the monitoring period (Figure 7.15).

![Figure 7.15. Meltwater river levels, hydraulic heads, and groundwater EC at T2.](image)

Groundwater EC at T3 was only measured between 30/07-31/08/2012. Groundwater EC at T3 was the highest (approximately 150 μS/cm) during the ablation-controlled flow regime of interval 2 (Figure 7.16). EC at T3 also had the highest mean and standard deviation (Table 7.1). However, in contrast to the small changes in groundwater EC that were observed at T1 (Figure 7.14) and T2 during the flood (Figure 7.15), groundwater EC at T3 declined substantially during the flood, falling from 160 to 40 μS/cm in 24 hours. Following the flood, groundwater EC at T3 rose back to 150 μS/cm in around 100 hours.
where it remained until the end of interval 3. During interval 4, EC rose to 160 μS/cm around the 23/08/2012 and then fell to 130 μS/cm. An abrupt fall and recovery in groundwater EC at T3 (from 130 to 60 μS/cm in 24 hours) was also measured near the end of the monitoring period (Figure 7.16).

Figure 7.16. Meltwater levels, hydraulic heads, and groundwater EC at T3.

7.3.5. Interpretation

Fluctuations in the levels of hydraulic heads and river-aquifer exchange can be caused by groundwater mounding, water table depression, variability in regional recharge, climatic variability, changes in transpiration, and changes in groundwater and surface water levels (e.g. Drexler et al., 1999; Käser et al., 2009). Within proglacial environments, changes in ablation also exert important control on groundwater levels and river-aquifer exchange (e.g. Magnusson et al., 2014).
Chapter 7

River-Aquifer exchange

The highest hydraulic heads at the transect were measured at T1, followed by T2 and T3 (Figure 7.8). This shows that groundwater flows away from the Skaftafellsá. Additionally, the west-east groundwater flow direction suggests that this area has a local groundwater flow system which is imposed on the north-south flowing regional groundwater system (Figure 7.7), in accordance with the model of Tóth (1963).

The close response between hydraulic heads at the transect and fluctuations in meltwater levels shows that meltwater levels are an important control on groundwater levels. The response of hydraulic heads to fluctuations in meltwater levels has been observed in all three piezometers. However, the strength in the signals of hydraulic heads and meltwater levels generally diminished with distance away from the meltwater channel. The largest attenuation of the signal of meltwater level fluctuations was observed T3, located furthest piezometer from the channel (Figure 7.8). However, the smallest dampening has been observed at T2, located further away from the channel than T1. These observations are also supported by the CCF analysis, which showed that the longest lag time was at T3 and the shortest at T2 (Table 7.2). This spatial variability suggests that distance from the channel is not the sole control on the dampening of the meltwater signal. Similar patterns of attenuation in river levels signal with distance away from the channel have been previously reported from catchments underlain by permafrost (Cooper et al., 2002; 2011), a proglacial forefield in the Swiss Alps (Magnusson et al., 2014), snowmelt-dominated catchments (Loheide and Lundquist, 2009), lowland floodplains (e.g. Jung et al., 2004; Vidon, 2012), and regulated rivers (e.g. Sawyer et al., 2009).

The close response of hydraulic heads to fluctuations in meltwater level (Figure 7.8) possibly suggests that large fluxes of meltwater are entering the aquifer, leading to high groundwater-meltwater exchange at the transect. However, an alternative hypothesis is that the coupling between hydraulic heads and meltwater levels is caused by the propagation of a kinematic pressure wave, which impacts groundwater levels and dampens with distance from the channel (e.g. Sawyer et al., 2009; Magnusson et al.,
Close coupling of groundwater levels with fluctuations in surface water following the propagation of a pressure wave have been previously described from various hydrological settings, including the proglacial forefield of an Alpine valley glacier (Magnusson et al., 2014), snow-dominated catchments (e.g. Loheide and Lundquist, 2009), and lowland flood plains (e.g. Vidon, 2012).

The extent of meltwater-groundwater exchange is pivotal for this study, as proglacial recharge sources exert an important control on groundwater levels, physicochemical parameters, and ecology (e.g. Brown et al., 2006a, b; Roy and Hayashi, 2008; 2009). The close dynamics between hydraulic heads and meltwater levels (Figure 7.8) suggest high levels of meltwater-aquifer exchange at the transect. However, there are contrasting reports in the literature with regards to the fluxes of groundwater-surface water exchange in sites where groundwater levels show close response to fluctuations in surface water. Some studies have suggested high level of river-aquifer exchange (e.g. Cooper et al., 2002; Fritz and Arntzen, 2007; Loheide and Lundquist, 2009). Conversely, other studies suggested negligible amount of exchange, suggesting that the coupling was caused by the propagation of a pressure wave, rather than actual surface water entering the aquifer (e.g. Magnusson et al., 2014). These controversies suggest that additional methods should be used in addition to fluctuations in groundwater and surface water levels (e.g. Käser et al., 2009; Welch et al., 2013; 2014). Therefore, in order to test the hypotheses of the causes for the coupling between groundwater and meltwater levels, the current study also used groundwater and meltwater physicochemical parameters (Figure 7.9, 7.13), geochemistry (Figure 6.8-6.10), and stable isotopes (Figure 6.18) in addition to the water levels data. Similar water quality and isotopic composition will suggest high level of mixing between groundwater and meltwater. Conversely, significantly different water quality and isotopic composition will suggest that mixing is low (e.g. Roy and Hayashi, 2009).

Groundwater and meltwater temperature and EC at the Skaftafellsjökull foreland were significantly different, with groundwater temperature and EC higher than that of meltwater.
These observations are consistent with those reported from many proglacial settings (e.g. Robinson et al., 2009b; Brown et al., 2007a; Kristiansen et al., 2013). The fluctuations in groundwater temperature have shown coupling with groundwater and meltwater levels, particularly at T2, where groundwater temperatures fell (rose) in response to a rise (fall) in meltwater and groundwater levels. Additionally, T2 was also the only borehole where groundwater temperature have fallen during the flood (Figure 7.11). Conversely, groundwater temperatures at T1 and T3 generally rose during the season, alongside the increase in meltwater levels (Figure 7.11. This suggests low exchange between the Skaftafellsá and T1 and T3. The fluctuations in EC also do not support high exchange between meltwater and groundwater, as groundwater EC was approximately 100-150 μS/cm higher than meltwater (Figure 7.13.). Additionally, EC fluctuations at T1 and T2 were fairly small and at times rose alongside groundwater and meltwater levels (Figure 7.14, 7.15), which does not suggest significant meltwater-groundwater exchange. Conversely, T3 has shown different dynamics, particularly during the flood, where EC fell substantially (Figure 7.16). Substantial drops in EC following a large input of low EC meltwater following outburst floods have also been reported from Greenland (Kristiansen et al., 2013). The decline in EC at T3 during the flood therefore suggests higher mixing between meltwater and groundwater at T3 than at T1 and T2. However, since EC at T1 and T2 did not fall during the flood, it is suggested that the flood did not flow across the transect.

In addition to temperature and EC, groundwater and meltwater solute concentrations and stable isotopes (Chapter 6) were also used to infer groundwater-meltwater exchange at the transect. Similar to water physicochemical parameters, similar solute concentrations and isotopic composition of meltwater and groundwater also suggest high meltwater-groundwater exchange (e.g. Cooper et al., 2002). However, groundwater SO$_4^{2-}$, Ca$^{2+}$, Mg$^{2+}$, and Na$^+$ + K$^+$ concentrations were significantly higher than meltwater solute concentrations, particularly at T1 and T2 (Figure 6.8-6.9). Additionally, groundwater
isotopic composition at the transect was significantly heavier than that of meltwater, suggesting recharge from precipitation rather than meltwater (Figure 6.18). High recharge of groundwater by meltwater is expected to result in groundwater with low solute concentrations and light isotopic composition (e.g. Hodgkins et al., 1998; Wadham et al., 2001). However, groundwater solute concentrations and isotopic composition at the transect were significantly different than those of meltwater. It is therefore suggested that meltwater-aquifer exchange at the transect is low, and that the close response of hydraulic heads to fluctuations in meltwater levels is caused by other mechanisms, possibly the propagation of a kinematic pressure wave, rather than significant recharge of the aquifer by meltwater.

In addition to the impact of meltwater levels on groundwater levels, precipitation also impacted groundwater levels. The impact of seasonal and inter-annual variability of precipitation on groundwater and surface water levels at the Skaftafellsjökull foreland is illustrated by the substantial changes in lake levels. Following an unusually dry spring and summer in 2012, lake levels at the Skaftafellsjökull foreland were very low. However, precipitation in the winter of 2013 was substantially higher than the monthly mean (Figure 3.15). Observations taken during a brief visit to the field site in July 2013 have shown that lake levels were substantially higher than in 2012 (Figure 7.17). Hydraulic heads at the outwash and near the river were higher by approximately 0.25 m than in August 2012. Although the coarse temporal resolution of these observations (1 year) masks finer fluctuations in groundwater and surface water levels, it is suggested that precipitation is an important control on groundwater levels at the Skaftafellsjökull foreland.
In addition to the impact of precipitation on inter-annual variability in groundwater levels, the impact of precipitation on daily and weekly fluctuations in hydraulic heads was also observed. Hydraulic heads at the site generally rose after rainfall events (Figure 7.2). However, spatial variability in the response of hydraulic heads to precipitation was also observed, which is suggested to be strongly impacted by the high variability in hydraulic conductivity (K) at the field site (Figure 5.9). For instance, hydraulic heads at GW8, which is located in an area of fine lacustrine deposits (K= 0.14 m/day) had steeper rises and slower recession following rainfall events than hydraulic heads which are located in coarser deposits (Figure 7.2). These observations are also supported by studies from glaciated (Robinson et al., 2008; Magnusson et al., 2014) and deglaciated catchments (e.g. Rains, 2011) who reported similar responses of groundwater levels in areas of lower hydraulic conductivity to precipitation events.

Figure 7.17. Inter-annual changes in lake levels at Island Lake.
Chapter 7 River-Aquifer exchange

The flood which took place on the 13-14/08/2012 was the main hydrological event during the 2012 field season, substantially impacting groundwater levels (Figure 7.8), physicochemical parameters (Figure 7.9, 7.13), and solute concentrations (Chapter 6). In addition to the impacts on groundwater at the transect, the flood also impacted water quality at the IL and Swan Lake, where turbidity increased and lake temperature and EC fell after the flood (Figure 6.6, 7.18). These observations show that in addition to precipitation, high discharge events are also important controls on proglacial groundwater-surface water exchange. However, since the flood took place during the break in monitoring (13-14/08/2012), the investigation of its route had to be inferred from the automated measurements of hydraulic heads, groundwater temperatures and EC at the transect.

Hydraulic heads in all three piezometers in the transect increased during the flood. However, the impact of the flood on groundwater temperature and EC varied substantially between the piezometers. Groundwater EC at T1 has risen by approximately 30 μS/cm and temperature increased by 0.5 °C during the flood. Conversely, groundwater temperature at T2 have fallen by 0.3 °C while EC declined negligibly. The largest impact of the flood on groundwater EC was observed at T3, where EC substantially fell by 110 μS/cm (Figure 7.13). Conversely, groundwater temperatures at T3 have risen by approximately 0.4 °C during the flood. The differences in the impact of the flood on groundwater physicochemical parameters suggest that the flood possibly followed various flow paths. The relatively small impacts on groundwater physicochemical parameters at T1 suggest that the flood did not flow from west to east across the transect, as a quick rise in groundwater or overland flow in such manner is expected to have reduced the EC and temperature at T1 and T2. As the highest impacts were observed at T3, it is suggested that T3 was impacted by either overland flow or enhanced groundwater flow from the north, which possibly travelled preferentially through the breached moraine (Figure 7.18).
Figure 7.18. The impacts of the flood in August 2012 flood on lake water quality at the IL and Swan Lake.

The figure shows the differences in lake turbidity in the IL before (July 2012) and after (August 2012) the flood. The dashed blue lines suggest the route of the flood, based on the differences in EC at T1 and T3.

7.3.6. summary

Meltwater and groundwater levels have risen at the beginning and middle of interval 2, following rainfall and an increase in air temperature. The main event during the field season was the flood on the 13-14/08/2012, during which groundwater and meltwater rose by approximately 0.5 m in 24 hours. Water levels then quickly receded following the flood. Hydraulic heads in the transect have shown close responsiveness to fluctuations in meltwater levels, which dampened with distance from the channel. The dampening of river levels signal with distance from the channel has been previously observed in various proglacial and non-glacial settings. However, despite the apparent coupling between
Chapter 7 River-Aquifer exchange

groundwater and meltwater levels, the geochemistry and isotopic composition of groundwater and meltwater were significantly different. It is therefore suggested that meltwater-aquifer exchange at the transect is low and that the coupling in levels is possibly caused by the propagation of a pressure wave rather than the actual exchange between groundwater and meltwater. The impacts of the flood have shown considerable spatial variability, with the highest impacts observed at T3. This suggests that the flood possibly travelled as overland flow from the north rather than in a west-east direction across the transect. The impact of precipitation on groundwater and surface water levels was illustrated on various time scales. The short term impacts of precipitation are illustrated by the rising in hydraulic heads following rainfall events. The inter-annual impacts of precipitation were illustrated by the changes in groundwater and lake levels between August 2012 and July 2013.

7.4. The impact of jökulhlaup events on proglacial river-aquifer exchange

This section investigates the impact of jökulhlaups (glacial outburst floods) on proglacial river-aquifer exchange. This was investigated at the river Núpsvötn-Súla, western Skeiðarársandur, where several small jökulhlaups were detected in July-August 2011. The Núpsvötn-Súla is formed by the confluence of the meltwater river Súla, which drains western Skeiðarárjökull and the river Núpsvötn, which is mainly fed by precipitation and snowmelt (Figure 7.19) (Churski, 1973; Guðmundsson et al., 2002). The river Súla is occasionally impacted by jökulhlaups which originate from Lake Grænalón, an ice marginal lake located to the west of Skeiðarárjökull, approximately 20 km to the north of the monitoring site (Figure 7.19) (Roberts et al., 2005). The lake is located in a subaerial valley, whose eastern end is dammed by the Skeiðarárjökull glacier. The glaciological conditions at Skeiðarárjökull therefore control the drainage and jökulhlaup generation from
Chapter 7 River-Aquifer exchange

Lake Grænalón (Roberts et al., 2005). The source of the outlet for jökulhlaups and their routing (subglacial or subaerial) has fluctuated over the years, which substantially altered jökulhlaup frequency. Drainage occurs approximately every 9 years when drained via the ice dam. Conversely, drainage occurs approximately once a year when drained via an ice buttress. Jökulhlaup frequency increased substantially during 2002-3, when five events occurred at approximately 30 day intervals (in 2002) and four jökulhlaup events occurred at approximately 40 day intervals (in 2003). The magnitude of these more frequent jökulhlaups, are substantially smaller than those controlled by the ice buttress (Roberts et al., 2005).

The impact of jökulhlaups on river-aquifer exchange was investigated using time series of groundwater and meltwater levels, temperature, and EC. These variables were automatically monitored between 08/07-15/08/2011. The monitoring took place at the GW4 piezometer, located near the Route No. 1 bridge, and at the river Súla (IMO, 2013). GW4 was chosen to assess river-aquifer exchange at this site due to its proximity (~200 m) to the Núpsvötn-Súla’s IMO gauging station (Figure 7.19). The hourly measurements of river levels, temperature and EC in this chapter were kindly provided by the IMO (2013). This site was also chosen due to its accessibility and the ease of installing shallow piezometers in the coarse-grained sandur deposits.
7.4.1. Temporal variability in meltwater and groundwater levels

Meltwater levels at the Súla generally fluctuated diurnally in response to changes in ablation. However, three low frequency, high magnitude episodic events, hypothesised to be small jökulhlaups, have also been detected. These jökulhlaups substantially impacted meltwater and groundwater levels. Hydraulic heads at GW4 varied between 57.20 and 57.40 mAD. Initially, groundwater levels slowly declined, falling to 57.23 mAD on
11/07/2011 at 1000 hours. During event 1, the Súla levels rose by 1.20 m in 17 hours, from 58.77 mAD (11/07/2011 at 0800 hours) to 59.97 m on 12/07/2011 at 0100 hours. In comparison, the diurnal fluctuations at the Súla were approximately 0.15 m (Figure 7.20). Groundwater levels rose sharply during event 1, until levels stabilised at 57.38 mAD on 1200 hours at 12/07/2011, approximately 10 hours after peak discharge in the Súla. Hydraulic heads have increased by 0.16 m over 26 hours during this event.

Groundwater remained at the same levels until 16/07/2011, when levels began to decline. River levels fell by 0.88 m, reaching 59.09 mAD on 12/07/2011 at 1700 hours. River levels then fluctuated until returning to the levels prior to the event (58.78 mAD) at 1000 hours, 15/07/2011. Meltwater fluctuations following the jökulhlaup were around 0.5 m. No significant rainfall was measured during this period (Figure 7.20). Water levels at the Súla then returned to an ablation-controlled flow regime, with diurnal fluctuations of approximately 0.15 m. Hydraulic heads at GW4 declined gradually, although several minor increases (<0.05 m) were also observed. Groundwater levels reached a low of 57.22 m on 29/07/2011. A small increase in river levels was observed between 1100 hours on 26/07/2011 to 2200 hours on 27/07/2011, where river levels have risen by 0.35 m. Groundwater levels have risen by approximately 0.07 m in response to this event (Figure 7.20).

Event 2 began at 0700 hours on 29/07/2011, when meltwater levels rose from 58.67 to 60.03 mAD on 0100 hours on 30/07/2011. Following the jökulhlaup, groundwater levels rose from 57.22 mAD on 0800 hours on 29/07/2011 to 57.39 mAD on 0700 hours on 30/07/2011. Meltwater levels have risen by 3.0 m in 10 hours during this event, which was the largest one recorded during the monitoring season. Groundwater levels have risen by 0.17 m in 23 hours in response to this event. During this event, the increase in groundwater levels lagged beyond the river levels by approximately one hour. Following the second event, river levels have returned to an ablation-controlled regime (Figure 7.20).
Event 3 began on the 04/08/2011. This event included three short episodes of rapid rise and fall in meltwater levels, during which the overall increase in meltwater levels was 1.19 m (Figure 7.20). The second and third rises during event 3 were smaller in magnitude than the first. In contrast to Events 1 and 2, Event 3 did not have a significant impact on groundwater levels at GW4, as groundwater levels remained around 57.39 mAD, with a small recession (0.05 m) during the first increase of Event 3. After the third increase during Event 3, meltwater levels have returned to ablation-controlled flow regime, under which it remained until monitoring ended on the 12/08/2011. Groundwater levels have steadily declined after Event 3, reaching levels of 57.20 mAD by the end of the monitoring period (Figure 7.20). However, it is possible that the relatively stable groundwater levels between 29/07-10/08/2011 were due to a technical problem with the pressure transducer. Apart from the sharp increases in response to the jökulhlaups, it is also noticeable that, in contrast to the groundwater dynamics at the Skaftafellsjökull foreland (Figure 7.8), the groundwater level at GW4 does not show significant response to oscillations in river levels when the latter is under ablation-controlled flow regime.
Figure 7.20. River levels at the Núpsvötn-Súla (IMO, 2013), hydraulic heads at GW4, and total daily precipitation at Kirkjubæjarklaustur IMO (2013) station.

The Figure also highlights the two different controls on the river flow regime: ablation-controlled flow regime and the three small jökulhlaups events (see text).

7.4.2. Temporal variability in groundwater and meltwater temperature

Similar to the approach used at the Skaftafellsjökull foreland, river and groundwater temperature were used in addition to meltwater and hydraulic heads for the investigation of river-aquifer exchange in western Skeiðarásandur. The mean groundwater temperature at GW4 exceeded river temperature by approximately 3.3°C. Furthermore, in contrast to the small variability in meltwater temperature at the Skaftafellsá (Figure 7.9), water temperatures at the Súla were more variable than groundwater temperatures at GW4. The Súla temperatures were higher and more variable than the Skaftafellsá (Table 7.1). However, despite the higher variability in Súla temperature, groundwater
temperatures at GW4 were lower than groundwater temperatures at the Skaftafellsjökull foreland (Table 7.1). The closest groundwater temperatures at the Skaftafellsjökull foreland to the temperatures at GW4 were those at GW9, where groundwater isotopic composition suggests recharge of meltwater recharge (Figure 6.20).

Similar to the observations from the Skaftafellsjökull foreland (Figure 7.9), groundwater temperatures at GW4 also increased during the season. Groundwater temperature at GW4 at the start of the season was 4.20°C, with temperatures reaching 6.09°C by the end of the season. However, the daily oscillations in groundwater temperature at GW4 were substantially smaller (Figure 7.21) than groundwater temperature oscillations at the Skaftafellsjökull foreland (Figure 7.9).

The increase in groundwater temperature at GW4 over the monitoring season has been very gradual. The main exceptions for this trend were after Event 1, when groundwater temperature rose by 0.15°C and following the increase in groundwater levels after Event 2, when groundwater temperature rose by 0.6°C. In contrast to the dynamics of groundwater levels, which declined after the jökulhlaups (Figure 7.20), groundwater temperatures continued to rise, and did not return to the pre-jökulhlaup values (Figure 7.21).

The large fluctuations in meltwater temperature in the Núpsvötn-Súla were very different from the sustained, gradual increase in groundwater temperature during the season (Figure 7.21). Meltwater temperature showed an inverse relationship to the oscillations in river levels, with river temperature falling (rising) with rising (falling) river levels. These dynamics are also supported by the negative correlation coefficient ($r = -0.437$) between river level and temperature. The jökulhlaup events substantially lowered stream temperature, which fell by 2.58 °C after Event 1 and 4.42°C after Event 2 (Figure 7.21). In contrast, meltwater temperature oscillations under ablation-controlled conditions (i.e. between Events 1 and 2) were smaller (1.5-2°C). However, these oscillations were
substantially larger than those measured in the Skaftafellsá, which were approximately 0.5°C (Figure 7.9).

In contrast to the rapid response between jökulhlaups and hydraulic heads (Figure 7.20), the impact of oscillations in meltwater levels on groundwater temperatures was much smaller. Meltwater temperatures in the Súla were substantially lower than groundwater temperatures, particularly during jökulhlaups (Figure 7.21). Hence, an infiltration of large fluxes of meltwater is expected to lower groundwater temperature (e.g. Kristiansen et al., 2013). However, groundwater temperature at GW4 actually rose between 0.2-0.6 °C after the jökulhlaups (Figure 7.21). The correlation between meltwater levels and groundwater temperatures at GW4 was weakly negative ($r = -0.196$).

![Figure 7.21. Meltwater levels and temperature at the Núpsvötn-Súla (IMO, 2013) and groundwater temperature at GW4.](image-url)
7.4.3. Temporal variability in groundwater and meltwater EC

Meltwater and groundwater EC in the river Súla and GW4 was higher than groundwater and meltwater EC at the Skaftafellsjökull foreland (Table 7.1). Groundwater EC at GW4 was approximately 150 µS/cm during the start of the monitoring season. EC then rose sharply following Event 1 and the rise in groundwater levels, peaking to 204 µS/cm.

During the ablation-controlled period, groundwater EC fluctuated around 160 µS/cm. Following Event 2, EC has risen by approximately 100 µS/cm, reaching 262 µS/cm. However, after event 2 EC declined rapidly. EC then rose again, although it did not reach the same values that were reached during the initial rise (Figure 7.22).

Groundwater EC increased to 265 µS/cm following Event 2, and then rapidly fell to 195 µS/cm. Groundwater EC fluctuated between 200 and 230 µS/cm between Events 2 and 3. However, in contrast to Events 1 and 2, where groundwater EC rose following the jökulhlaups, groundwater EC during Event 3 fell when meltwater levels rose. Groundwater EC declined by 80 µS/cm when the Súla returned to ablation-controlled flow regime after Event 3 (Figure 7.22). The correlation between groundwater levels and groundwater EC was strongly positive (r= +0.733). The correlation between meltwater levels and groundwater EC was also positive, though weaker (r= +0.257).

Meltwater EC at the Súla was substantially lower than groundwater EC (Table 7.1), similar to the findings of previous research from Skeiðarársandur and other proglacial environments (e.g. Robinson et al., 2009b). Meltwater EC ranged between 25 to 35 µS/cm during ablation-controlled flow regime, where EC rose (fell) when meltwater levels fell (rose). However, meltwater EC was also substantially impacted by the jökulhlaups, with meltwater EC increasing by approximately 50 µS/cm during Event 1 and by approximately 30 µS/cm during events 2 and 3 (Figure 7.22). The correlation between meltwater levels and EC was strongly positive (r= +0.816). Similar to groundwater temperature, meltwater
EC at the Súla (Figure 7.22) were also substantially higher and more variable than those observed in the Skaftafellsá in 2012 (Figure 7.13.).

Figure 7.22. Meltwater levels and EC at the river Núpsvötn-Súla (IMO 2013) and groundwater EC at GW4.

7.4.4. Interpretation

Various studies have looked at the hydrological, sedimentological, geomorphic and natural hazards implications of jökulhlaups (e.g. Russell et al., 2006; Robinson et al., 2008; Emer and Vilímek, 2013). However, the impact of jökulhlaups on groundwater systems has not been well studied. The main impact of jökulhlaups on groundwater which was observed at this study was the quick increases in groundwater levels by approximately 0.20 m immediately following jökulhlaups (Figure 7.20). However, despite
these increases, the actual extent of river-aquifer exchange at GW4 is not clear. Similar to the observations from the Skaftafellsjökull foreland (Figure 7.8), close response between groundwater levels and fluctuations in meltwater levels during high discharge events has also been observed at GW4 (Figure 7.19). However, the substantial differences between meltwater and groundwater EC and temperature do not suggest significant meltwater-groundwater exchange at GW4.

Substantial differences were identified between groundwater and meltwater temperature at the Skaftafellsjökull foreland and in western Skeiðarárssandur. However, the variability in meltwater temperatures at the Súla was higher than that of the Skaftafellsá (Table 7.1). Additionally, temperatures at the Súla fell substantially during the jökulhlaups (Figure 7.21), which was not observed at the Skaftafellsá during high discharge conditions (Figure 7.9). The higher temperatures at the Súla are possibly due to the larger distance from the glacier margin and the mixing with the rain/snow-fed river Núpsvötn (Guðmundsson et al., 2002). However, despite the contrasting temperature dynamics and geomorphic processes between the Súla and the Skaftafellsá, fluctuations in meltwater levels were observed to be an important control on proglacial groundwater levels at both sites.

Similar to the observations from the Skaftafellsjökull foreland, high river-aquifer exchange, which is suggested by the quick response of hydraulic heads to fluctuations in meltwater, is contested because of significantly different groundwater and meltwater EC and temperature at GW4. The propagation of substantial meltwater fluxes into the aquifer is expected to substantially reduce groundwater temperatures and EC (e.g. Roy and Hayashi, 2009). However, groundwater temperatures and EC at GW4 rise by 0.3-0.6 °C and 50-100 μS/cm, respectively, rather than fall, during the jökulhlaup events (Figure 7.21). However, river EC is still lower by approximately 100 μS/cm than groundwater EC (Figure 7.22), which does not support high river-aquifer exchange at the site.
A possible hypothesis for the controversies between observed increases in groundwater levels and the changes in groundwater temperature and EC following jökulhlaups is the propagation of a kinematic pressure wave (e.g. Jung et al., 2004). Another hypothesis is the distance from the channel. GW4 is located approximately 200-250 m from the Súla channel, which is nearly three times the distance between the Skaftafellsá and the furthest borehole T3 (67 m). Studies from a sandur in Svalbard showed that the impacts of meltwater infiltration on groundwater geochemistry were substantially dampened in a well located 118 m from the meltwater channel (Cooper et al., 2002). It is therefore possible that, due to the distance from the channel, the only parameter which can be detected during jökulhlaups is the increase in hydraulic heads. However, changes in groundwater temperature and EC, which suggest the entrance of meltwater into the aquifer, might be detected closer to the channel.

The increases in groundwater temperature and EC at GW4 during jökulhlaups can also be possibly attributed to piston flow (e.g. Geyh et al., 2000), where groundwater flows as a single parcel. This hypothesis suggests that groundwater, with relatively high EC and temperature, has been pushed horizontally towards GW4 by the jökulhlaups. However, there is insufficient evidence at this stage to define the cause for the changes in groundwater EC and temperature at GW4 following jökulhlaups.

These preliminary results have highlighted the connection between jökulhlaups and groundwater levels. The impacts of jökulhlaups on groundwater levels which were highlighted in this study are important for the understanding of jökulhlaup processes and impacts and for the modelling and planning of mitigation strategies against their adverse impacts (Emmer and Vilimek, 2013).

7.4.5. Summary

This section investigated the impact of low frequency, high magnitude events (jökulhlaups) on groundwater levels, physicochemical parameters, and hydrological
Chapter 7 River-Aquifer exchange

exchange between the aquifer and the meltwater river Súla. Fluctuations in river level are
generally ablation-controlled. However, the ablation-controlled flow regime was
episodically interrupted by three distinct jökulhlaup events. These events have led to
substantial increases in meltwater levels and EC and substantial falls in river
temperatures. Hydraulic heads at GW4 also increased substantially following the
jökulhlaups. Conversely, groundwater temperatures and EC have risen. The increase in
hydraulic heads suggest high river-aquifer exchange at the site. However, penetration of
meltwater into the aquifer is expected to have reduced groundwater temperatures and EC.
It is therefore suggested that the increases in hydraulic heads were not caused by the
entry of large fluxes of meltwater into the aquifer. Possible hypotheses for the observed
changes in groundwater physicochemical parameters are the propagation of a pressure
wave and piston flow. However, further work is needed in order to test these hypotheses.

7.5. Discussion

The observations from the Skaftafellsjökull foreland and the river Súla in western
Skeiðarársandur have shown that fluctuations in meltwater levels are an important control
on hydraulic heads. However, despite the close response of hydraulic heads to
fluctuations in meltwater levels, groundwater temperature, EC, solute concentrations, and
isotopic composition were significantly different than that of meltwater. This suggests that
groundwater-meltwater exchange at the transect is low. Previous studies from
Skeidararansudr, which have used stable isotopes, identified ice melt and local
precipitation as the main sources of groundwater recharge (Robinson et al., 2009a). The
stable isotope composition of groundwater and surface water at the Skaftafellsjökull
foreland suggest that precipitation is the dominant source for groundwater recharge
(Figure 6.18). Precipitation was also identified as an important control on groundwater
levels at the Skaftafellsjökull foreland (Figure 7.2). These observations have significant
implications with regards to the impacts of climate change and glacier retreat on proglacial
river-aquifer exchange, with the observations from this study suggesting that groundwater
recharge at this site will be more sensitive to changes in precipitation than to changes in meltwater caused by glacier retreat. Additionally, this chapter has also highlighted the impact of fluctuations in meltwater levels following high discharge events on proglacial groundwater levels. These impacts have been observed at both study sites, in spite of their different geomorphology and hydrology, suggesting that fluctuations in meltwater levels are an important control on proglacial groundwater levels and flow direction. The results of this chapter are summarised in a conceptual model of proglacial river-aquifer exchange (Figure 7.23).

Figure 7.23. Conceptual model of the controls and impacts of proglacial river/aquifer exchange.
7.6. Conclusions

This chapter investigated groundwater flow direction and river-aquifer exchange at the Skaftafellsjökull foreland. The configuration of proglacial groundwater flow was inferred from the distribution in hydraulic heads. The regional groundwater flow system generally flows from North to South, away from the glacier margin. However, a local west-east groundwater flow system, which is superimposed on the regional groundwater flow system, has been identified at the transect. The general groundwater flow patterns are consistent with observations from other proglacial settings. Hydraulic heads at the Skaftafellsjökull foreland were responsive to rainfall events.

Time series of meltwater and groundwater levels, temperature, and EC were used to investigate the controls of high frequency, low magnitude (precipitation and ablation) and episodic events (jökulhlaups) on proglacial river-aquifer exchange. Hydraulic heads followed the fluctuations in meltwater levels, albeit with a lag of 6-10 hours. The lag generally increased with distance from the channel. A large flood event in August 2012 was the main hydrological event during the monitoring period, during which meltwater and groundwater levels rose by approximately 0.5 m. The meltwater flow regime was dominated by ablation, with meltwater levels rising (falling) with increasing (falling) air temperature. However, this relation was not straightforward, as some rises in meltwater levels, notably the flood in mid-August 2012, were not associated with a large rise in air temperature or large precipitation events. The close coupling between the fluctuations in meltwater and groundwater levels shows the impact of fluctuations in meltwater levels on groundwater levels and groundwater flow direction, suggesting high river-aquifer exchange. However, groundwater physicochemical parameters, solute concentrations, and isotopic composition contest this suggestion. It is hypothesised that the fluctuations in groundwater levels are caused by other processes, such as the propagation of a pressure
wave, rather than meltwater recharge of the aquifer. It is therefore suggested that meltwater-groundwater exchange at the transect is low. In contrast to the transect, solute concentrations and the isotopic composition of GW9 suggests proportions of meltwater in the groundwater. However, it is not clear whether this water originated from overbank flow. This chapter also highlighted the importance of precipitation to groundwater levels, particularly the impacts of spatial variability in hydrogeology on the response of groundwater levels to rainfall. The impacts of precipitation were observed at both short (daily-sub seasonal) and longer (inter-annual) time scales.

This chapter also investigated the impact of low frequency, high impact events (jökulhlaups) on river-aquifer exchange. The results have shown that groundwater levels ~200-250 m away from the channel quickly rose by approximately 0.20 m following small jökulhlaup events. However, the temperature and EC data do not suggest that these increases were caused by meltwater recharge. It is therefore suggested that the observed increase in groundwater levels has been caused by other mechanisms such as the propagation of a kinematic pressure wave or piston flow. Hence, the exchange between meltwater and groundwater at the river Súla field site is low. However, the impact of fluctuations in meltwater levels on groundwater levels was reported from both sites, showing the important control of fluctuations in meltwater on proglacial groundwater levels.
8. Thermal and hydrogeological tracing of aquifer-lake exchange

8.1. Introduction

Groundwater contributions to lakes substantially impact the hydrology, ecology, and biogeochemistry of lakes (e.g. Winter, 1999; Hieber et al., 2001; Hood et al., 2006; Roy and Hayashi, 2009; Ala-aho et al., 2013; Neumann et al., 2013). Therefore, understanding and quantifying the exchange between groundwater and lakes is necessary for understanding nutrient fluxes into lakes (e.g. Sebok et al., 2013; Shaw et al., 2013), the impact of anthropogenic activities on water quality (e.g. Schmidt et al., 2010; Smerdon et al., 2012; Muellegger et al., 2013), and to improve catchment and water resources management, particularly in light of projected changes in climate and land use (e.g. Meinikmann et al., 2013).

Proglacial aquifer-lake exchange is subjected to high spatial and temporal variability. The spatial variability in aquifer-lake exchange is strongly controlled by the heterogeneity in proglacial geomorphology and geology, which has been reported from an array of proglacial settings (e.g. Hannah and Gurnell, 2000; Smith et al., 2001), including the Skaftafellsjökull foreland (Chapter 5). In addition to geology and geomorphology, spatial variability in lake-aquifer exchange is also controlled by the degree of connectivity of the lake system to local and regional groundwater flow systems (Tóth, 1963; Winter 1999), topography, and position within the landscape (e.g. Campbell et al., 2004; Abnizova and Young, 2008; Ala-aho et al., 2013), lake stage (Smerdon et al., 2005), lakebed morphology and sedimentology (e.g. Rautio and Korkka-Niemi, 2011), the drainage area/lake area ratio (Schmidt et al., 2010), and climatic conditions (e.g. Roy and Hayashi, 2008). Temporal heterogeneities in groundwater-lake exchange are mainly controlled by meteorological variability and water levels (e.g. Kirillin et al., 2013; Rosenberry et al.,
Chapter 8

Aquifer-lake exchange

2013). However, within proglacial settings, this variability is enhanced by the high diurnal, seasonal and annual variability of snowmelt, icemelt, and frozen ground (e.g. Hannah et al., 1999; 2000).

Although the importance of groundwater-lake exchange is well recognised (e.g. Winter, 2001; Krause et al., 2014), there have not been many studies which directly investigated groundwater-lake exchange in catchments which are dominated by snow and ice melt (Hood et al., 2006). Furthermore, there are controversies with regards to the magnitude of groundwater-lake exchange, with some studies suggesting aquifer-lake exchange to be negligible (Kattlemann and Elder, 1991; Michel et al., 2002; Winter, 2003). Conversely, other studies suggested groundwater-lake exchange to be significant. For instance, it has been suggested that groundwater contributed between 30-74% of water inflow into Lake O’Hara in the Canadian Rockies (Hood et al., 2006). Another study from the same watershed suggested that groundwater contributed at least 35-39% of inflow into Lake Hungabee (Roy and Hayashi, 2008). Significant groundwater contributions were also reported from Williams Lake, Minnesota, where groundwater seepage was calculated to contribute approximately 74% of the annual water input to the lake (LaBaugh et al., 1997). Other studies have also suggested groundwater-lake exchange to be significant although groundwater-lake exchange was not directly quantified (Campbell et al., 2004; Gurrieri and Furniss, 2004).

Aquifer-lake exchange has been traditionally investigated using methods based on hydrological observations, such as seepage meters (e.g. Lee, 1977; Kalbus et al., 2006). However, the variability in hydrogeological parameters and logistical difficulties found in proglacial settings can limit the applicability of such methods (e.g. Langston et al., 2013). In order to overcome some of the challenges associated with these methods, temperature (heat) tracing has been extensively used in order to investigate groundwater-surface water exchange in rivers (e.g. Schneider et al., 2011) and lakes (e.g. Sebok et al., 2013).
This usage has increased substantially following the falling costs and improvements in the robustness of reliable temperature sensors.

Heat transfer within sediment pore-water can take place by four methods: conduction, advection, convection, and radiation (e.g. Krause et al., 2012). Heat conduction involves the transfer of thermal energy by diffusive molecular motion. Conversely, both heat advection and convection involve the movement of the water itself. Heat transfer by radiation occurs when solar heat energy is adsorbed by the water column which propagates into the sediment pore-water (Constantz, 2008). The tracing of groundwater-surface water exchange using heat is based on temperature anomalies at the river or lake bed, which may suggest areas of enhanced groundwater-surface water exchange. Hence, water temperature is an effective tracer for groundwater-surface water exchange in stream and lakebeds with substantial differences between groundwater and surface water temperatures. Such conditions are common in proglacial environments (e.g. Ward et al., 1999; Kristiansen et al., 2013), including the Skafafellsjökull foreland, where groundwater and surface temperature are significantly different (2 tails t test, 5% Significant Level (S.L.); p=<0.001) [Table 7.1]. The merits of temperature tracing are its ubiquity, robust and relatively inexpensive measurements (e.g. Keery et al., 2007), and the lack of possible contamination that is associated with chemical tracers (e.g. Constantz, 2008).

Additionally, the thermal properties of sediment, which provide key inputs to the analytical solutions of heat transport equations, are much more narrowly constrained than the high variability that is associated with hydrogeological properties such as hydraulic conductivity (Lautz, 2010). Heat tracing can be used to investigate the direction (e.g. Anderson, 2005b; Anibas et al., 2009) and magnitude of groundwater-surface water exchange (e.g. Westhoff et al., 2007; Briggs et al., 2012; Kidmose et al., 2013).

Proglacial lake-aquifer exchange at the Skafafellsjökull foreland was investigated at the Instrumented Lake [IL] (Figure 3.19). This lake was chosen due to the substantial differences in hydrogeological parameters between its eastern (fine-grained) and western
Aquifer-lake exchange

(coarse-grained) lakeshores (Figure 5.9), which will increase the understanding of the controls of hydrogeological heterogeneity on aquifer-lake exchange.

This study employed two techniques of temperature tracing: High spatial and temporal resolution mapping of lakebed temperatures at the IL was achieved using Fibre Optic-Distributed Temperature Sensing (FO-DTS). Temperature anomalies at the lakebed were then used to infer the spatial and temporal patterns of aquifer-lake exchange. In addition to the FO-DTS, groundwater seepage into the lake was calculated from hourly measurements of pore-water temperatures which were obtained from three Vertical Temperature Profiles (VTP) around the IL (Tristram et al., 2015). However, due to the high variability in groundwater-surface water exchange, previous studies have recommended to use more than one method (e.g. LaBaugh, 1997; Hunt et al., 1996; McCallum et al., 2014). Therefore, in addition to the VTP, groundwater seepage fluxes obtained from traditional hydrogeological measurements (Darcian fluxes) were also used to investigate proglacial aquifer-lake exchange at the Skaftafellsjökull foreland.

This chapter aims to investigate the spatial and temporal patterns of hydrological exchange between groundwater and the IL. The specific objectives for this chapter are:

1. To map lakebed temperatures and use temperature anomalies to investigate the spatial and temporal variability of aquifer-lake exchange at the IL.

2. To quantify groundwater discharge to the IL using temperature tracing methods and Darcian fluxes.

3. To compare between the temperature methods and hydrogeological methods of quantifying aquifer-lake exchange.

4. To delineate the spatial variability of aquifer-lake exchange at the IL.
8.2. Methods for investigating proglacial-aquifer lake exchange

8.2.1. Mapping of lakebed temperatures

Temperature tracing requires monitoring of pore-water temperatures at high temporal and spatial resolutions, which is able to reveal temperature anomalies at the stream/lake bed (e.g. Malcolm et al., 2002). Such anomalies can then be used to infer the spatial and temporal dynamics of groundwater discharge into the lake/stream bed (e.g. Krause et al., 2012). Lakebed temperatures at the IL were mapped using FO-DTS. This method uses Raman-backscatter of 10 nanosecond FO-DTS pulses laser beams, which originate from the absorption and re-emission of light energy at different wavelengths. The beams are sent along a fibre-optic cable and then get reflected back towards the sensor, located at the beginning of the cable. Using the speed of light and the time taken for the laser to return, the distance from where the laser has been reflected can then be calculated. The majority of the reflected light remains at the same wavelength. However, some of the light is reflected back at shorter (Anti-Stokes) and longer (Stokes) wavelengths than that of the original. The Anti-Stokes backscatter is linearly affected by temperature whereas the Stokes backscatter is negligibly affected by temperature. Therefore, the Stokes/Anti-Stokes ratio can be used to measure temperature at any point along the cable. FO-DTS allows for both temporal and spatial temperature measurements to be recorded with resolutions of up to 0.01°C for every metre along the cable for up to 10,000 m (Selker et al., 2006 a). This technique has been increasingly used in various hydrological settings (Selker et al., 2006 a, b; Lowry et al, 2007; Tyler et al., 2009; Westhoff et al., 2011; Tristram et al., 2015).

The current study applied a Sensornet Halo FO-DTS which measures temperature at high precision (0.05 °C) at 30 second intervals and a sampling resolution of 2 m (Sensornet 2009). The survey deployed a 500 m long 2-channel fibre-optic cable (BruOutdoor, Brugg/CH). The FO-DTS setup used alternating single-ended measurements in clockwise
and anti-clockwise directions that were combined in a 2-way single ended averaging mode, as described by Krause and Blume (2013). The dynamic temperature calibration was performed using a calibration bath (water obtained from meltwater river), where temperatures were continuously monitored in the same time intervals as the FO-DTS measurements.

The fibre-optic cable in the current study was installed at two depths: The upper cable was laid directly on the lakebed, while the other cable was buried manually at approximately 0.10-0.15 m within the lakebed sediment. This design allowed a direct comparison between sediment temperatures within the lakebed (buried cable) and lakebed (upper cable) temperatures, which are potentially more influenced by surface water column temperatures. The fibre-optic cables were deployed around the circumference of the lake, at ~2 m distance from the lake shore (Figure 3.19). The buried cable was pushed into the sediment and spot checks indicated that the deployment depth remained constant during the course of the experiment. The FO-DTS monitoring of lakebed temperatures took place from 1200 hours on 24/06/2012 to 1300 hours on 25/06/2012.

8.2.2. Calculation of groundwater fluxes from pore-water temperatures

Groundwater fluxes into the IL were quantified using pore-water temperatures which were obtained from Vertical Temperature Profiles (VTP) (Figure 3.19). This technique has been previously used to investigate the interaction between streams (e.g. Hatch et al., 2006; Lautz, 2010; Briggs et al., 2012; 2013) and lakes (Kidmose et al., 2011; 2013). Pore-water temperatures at the lakebed were monitored between 1800 hours 20/06/2012 to 1400 hours 28/07/2012 using automatic HOBO thermistors, with an accuracy of ±0.025 °C (Krause et al., 2011b). The thermistors were emplaced within perforated metal tubes, which provided protection and allowed groundwater infiltration and direct contact with the temperature sensor at specified depths. Each VTP location included three thermistors,
which were emplaced at 10 cm, 25 cm and 40 cm below the lakebed, following similar configuration to Krause et al. (2011b). Substantial sediment heterogeneity was observed between the three VTP locations. The northern (VTP₁), eastern, and southern (VTP₃) lakeshores are underlain by fine sediment, while the western side (VTP₂) is underlain by coarse sands and gravels.

Groundwater fluxes were calculated from pore-water temperatures using a 1-D model of vertical seepage fluxes (Equation 8.1) which has been previously used to investigate groundwater interaction with streams (e.g. Hatch et al., 2006; Lautz, 2010; Briggs et al., 2012; 2013) and lakes (Kidmose et al., 2011; 2013; Tristram et al., 2015). The model is based on sinusoidal diurnal temperature oscillations within the sediment, where the dampening of the amplitude and phase shift with depth forms the basis for calculating the temperature variation as a function of time and depth (Stalman, 1965). These inputs can then be used to calculate groundwater seepage rates (Hatch et al., 2006; Lautz, 2010; Tristram et al., 2015). A particular advantage of this method is the need for knowing solely the vertical distance between the temperature sensors, rather than their absolute depth. This advantage removes complications that occur from changes in bed conditions due to scouring and sedimentation. The model is based on the assumptions of purely vertical flow, sinusoidal temperature fluctuations, and no thermal gradient at the lakebed (Hatch et al., 2006, Lautz, 2010). Intrinsically, these assumptions will be violated under non-ideal field conditions. However, this method was found robust to some of the violations of the assumptions particularly when groundwater flow is vertical (Lautz, 2010).

The One-dimensional heat transport model (Equation 8.1) for quantifying groundwater fluxes (e.g. Hatch et al. 2006) is based on conduction, advection and dispersion.
\[\frac{\partial T}{\partial t} = K_e \frac{\partial^2 T}{\partial z^2} - \frac{q}{\gamma} \frac{\partial T}{\partial z}. \]

Equation 8.1. The 1-D heat transport model

T is temperature (°C), which is a variant of time (t, in sec) and depth (z, in m), \(K_e \) is effective thermal diffusivity (\(m^2/s \)), q is vertical seepage flux (m/s), and \(\gamma \) the ratio of heat capacity of the sediment matrix in the lakebed to the water heat capacity (Lautz 2010).

Groundwater fluxes (q) (m/s) (Lautz, 2010) were calculated using Equation 8.2.

\[q = \frac{\rho c}{\rho c_w} \sqrt{\alpha - 2 \frac{\Delta \phi 4\pi K_e^2}{P \Delta z}} \]

Equation 8.2. Quantification of groundwater fluxes

\(\rho c \) and \(\rho c_w \) denote heat capacity of sediment water matrix and water, respectively (J/(m\(^3\) °C)), \(\Delta z \) is the difference in depth between two thermistors at the lakebed (m), \(K_e \) is the effective thermal diffusivity (\(m^2/s \)), P is the period of temperature signal (sec), and \(\Delta \phi \) is the lag time (hours) between the maximum correlation of temperature between the uppermost and lower temperature sensors. The lag time was calculated by using the Cross Correlation Function (CCF) between the different temperature sensors (Hannah *et al.* 2009, Krause *et al.* 2011a, b). The CCF was calculated using R version 3.0.1. The \(\alpha \) perimeter was calculated using Equation 8.3.
\[\alpha = \sqrt{v^4 + \left(\frac{8\pi K_e}{P} \right)^2} \]

Equation 8.3. The alpha perimeter for quantifying heat fluxes

\(V \) is the velocity of the thermal front (m/s), calculated using the ‘speed = distance/time’ equation, where distance is the depth to the logger sensor (m) and time is the lag time (hours) obtained by the CCF, following the analytical procedures of Tristram et al. (2015).

The effective thermal diffusivity \((\kappa_e) \) was calculated using Equation 8.4.

\[K_e = \frac{\lambda_e}{\rho c} \]

Equation 8.4. Effective thermal diffusivity

Table 8.1. The parameters used in equations 1-4 (Hillel, 2004, Lautz, 2010) for the calculation of seepage fluxes. The table shows calculations using parameters for fine (a) and coarse (b) sediments.

<table>
<thead>
<tr>
<th>Sediment property</th>
<th>Units</th>
<th>Value used in the equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective thermal conductivity (\lambda_e) (Lautz, 2010)</td>
<td>(J/(s m °C))</td>
<td>0.84(^{(a)}) 1.67(^{(b)})</td>
</tr>
<tr>
<td>Heat capacity of saturated sediment-fluid system ((\rho C)) (Lapham, 1989)</td>
<td>(J/(m(^3) °C))</td>
<td>3.6x10(^{6}) (^{(a)}) 3.1x10(^{6}) (^{(b)})</td>
</tr>
<tr>
<td>Heat capacity of water ((\rho C_w)) (Lautz, 2010)</td>
<td>(J/(m(^3) °C))</td>
<td>4.2x10(^{5})</td>
</tr>
<tr>
<td>Effective thermal diffusivity ((\kappa_e)) (Lapham, 1989, Lautz, 2010)</td>
<td>(m(^2)/s)</td>
<td>2x10(^{-7}) (^{(a)}) 5x10(^{-7}) (^{(b)})</td>
</tr>
</tbody>
</table>

\(\lambda_e \) is the effective thermal conductivity (J/(s m)), and \(\rho c \) is the heat capacity of the saturated sediment water matrix (J/(m\(^3\) °C) (Hatch et al. 2006). \(\lambda_e \) was obtained from stream studies concerning finer and coarser sediment (Lautz 2010) and \(\rho c \) was obtained from Lapham...
Chapter 8
Aquifer-lake exchange

(1989). The parameters which were used in the equations are found in Table 8.1. The different grain size for each VTP, which was used in Equation 8.4, are presented in Table 8.2.

Table 8.2. Grain size variability for the different VTP locations.

| Sediment properties at the locations of the Vertical Temperature Profiles |
|-----------------------------|----------------|---------------|----------------|
| Grain size (µm) | VTP 1 | VTP 2 | VTP 3 |
| d_{10} | 4.93 | 15.37 | 5.12 |
| d_{50} | 21.91 | 175.70| 22.43|
| d_{90} | 54.58 | 1021.00| 57.28|

8.2.3. Calculation of groundwater fluxes from hydrogeological measurements

In addition to the temperature tracing, groundwater fluxes were also quantified using hydrogeological-based methods (Darcian fluxes). This method has been previously used to investigate groundwater-surface interaction in streams (e.g. Kennedy et al., 2010; Binley et al., 2013), wetlands (LaBaugh et al., 1997), and lakes (Blume et al., 2013). Darcian fluxes were calculated using hydraulic heads and hydraulic conductivity (Equation 8.5).

\[
q = \left(\frac{\Delta h}{\Delta l} \right) \times K
\]

Equation 8.5. Calculation of Darcian fluxes

q is the Darcian flux of groundwater discharge (m/day), \(\left(\frac{\Delta h}{\Delta l} \right) \) is the Vertical Hydraulic Gradient (VHG), and K is the saturated hydraulic conductivity (m/day). The hydraulic conductivity was determined by Particle Size Analysis of sediment samples using the Hazen method (section 5.4).
Chapter 8
Aquifer-lake exchange

The Vertical Hydraulic Gradient (VHG) describes the ratio of the difference between the hydraulic head (mAD) in the piezometer and the lake stage (in mAD) [Δh] and the vertical distance between the lakebed and the midpoint of the screened section of the piezometer (m) [Δl]. The VHG shows the strength and direction of groundwater-surface water exchange. Positive VHG suggest that piezometric heads are higher than lake stage, implying groundwater discharge. Conversely, negative VHG suggests that the subsurface head is lower than the stage at the surface water, suggesting groundwater downwelling (e.g. Käser et al., 2009). VHG were previously used to investigate the interaction between groundwater and streams (e.g. Arntzen et al., 2006) and lakes (Rautio and Korkka-Niemi, 2011). VHG at this study were calculated using hydraulic head measurements from the piezometer nests, installed at 0.50, 1.00 and 1.50 m below the lakebed at the fine-grained (Clay Nest [C.N.] and coarse-grained (Sand Nest [S.N.] lakeshores. The Sand Nest is located approximately 20 m from VTP 2 and the Clay Nest was located approximately 40 m from VTP 1 (Figure 3.19). The Darcian fluxes from the nests were then compared to the fluxes calculated from the VTP (objective 3). In order to provide a more comprehensive comparison between the methods, Darcian fluxes were also calculated from the piezometers located nearest [proxy locations] to VTP₁ (C.N., L6), VTP₂ (S.N.), and VTP₃ (L4, L5). The hydraulic conductivity for the proxy locations was calculated from the PSA of the respective VTP (Table 8.3).

Table 8.3. Hydraulic conductivity (m/day) for the VTP locations and proxies

<table>
<thead>
<tr>
<th>VTP</th>
<th>Piezometers used as proxy location for each VTP</th>
<th>Hydr. conductivity (m/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTP 1</td>
<td>Sand Nest 150</td>
<td>9.77x10⁻¹</td>
</tr>
<tr>
<td></td>
<td>Clay Nest 50</td>
<td>5.4x10⁻³</td>
</tr>
<tr>
<td></td>
<td>Clay Nest 100</td>
<td>3.5x10⁻³</td>
</tr>
<tr>
<td></td>
<td>Clay Nest 150</td>
<td>3.4x10⁻³</td>
</tr>
<tr>
<td></td>
<td>L6</td>
<td>8.5x10⁻³</td>
</tr>
<tr>
<td>VTP 2</td>
<td>Sand Nest 50</td>
<td>1.23x10⁻²</td>
</tr>
<tr>
<td></td>
<td>Sand Nest 100</td>
<td>5.64x10⁻¹</td>
</tr>
<tr>
<td>VTP 3</td>
<td>L4</td>
<td>4.7x10⁻²</td>
</tr>
<tr>
<td></td>
<td>L5</td>
<td>4.7x10⁻²</td>
</tr>
</tbody>
</table>

265
8.3. FO-DTS monitoring of lakebed temperature

The FO-DTS mapping of lakebed temperatures at the lakebed (the upper cable) and at 0.10 m within the lakebed sediments (the buried cable) of the IL are presented in Figure 8.1 and 8.2. The maps are separated into six 4-hour averaged data groups, which show clear diurnal patterns of temperature oscillations at both the lakebed and at 0.10 m within the lakebed. Temperatures at 0.10 m below the lakebed were colder, particularly between 0400 and 0800 hours. The general dynamics of the mean temperature are similar, with a rise in mean temperature between 1200 and 2200 hours and a decline between 2200 and 0400 hours. Temperatures were fairly stable between 0400-0800 hours, which was followed by a rise in temperatures until the end of the measurements (Figure 8.1, 8.2).

The range of averaged spatial temperatures at the lakebed (11.5-21°C, range of 9.5 °C) and at 0.10 m depth (~11-20 °C, range of 9 °C) were similar. However, the variability in temperatures at the lakebed was larger than at 0.10 m below the lakebed. This was especially pronounced during the temperature decline between 22:00 - 08:00 hours, when average temperatures at the lakebed varied by up to 2.5°C (Figure 8.1). Conversely, the temperature variability at 0.10 m depth within the lakebed was less than 1 °C (Figure 8.2).

The higher variability in temperatures at the upper cable is illustrated by the difference between the 5th and 95th percentile for each cable and by the smaller oscillations in mean temperature at the buried cable, particularly during the fall in temperatures between 2200 and 0400 hours (Figure 8.3). These general similarities in the temperature dynamics between the two depths suggests some propagation of the surface water temperature signal into the sediment. However, the lower temperatures and variability at the buried cable suggest that the thermal patterns from the surface are dampened with depth.
Chapter 8 Aquifer-lake exchange

Figure 8.1 FO-DTS monitored temperatures measured on top of the lakebed sediments (upper cable).

The figure (from Tristram et al., 2015) shows 4 hour averages from 12:00 hours (24/06/2012) – 12:00 (25/06/2012). The 1, 2, 3 mark the respective locations of the Vertical Temperature Profiles (VTP).
Figure 8.2. FO-DTS monitored temperatures measured at 0.10 m depth within the lakebed sediments (buried cable).

The figure (from Tristram et al., 2015) shows 4 hour averages from 12:00 hours (24/06/2012) – 12:00 (25/06/2012). The 1, 2, 3 mark the respective locations of the Vertical Temperature Profiles (VTP).
Figure 8.3. Mean, 5th and 95th Percentile of the FO-DTS surveys temperatures for lakebed sediments (upper cable) and 0.10 m depth within the lakebed sediments (buried cable).

The surveys were conducted between 24/06/2012 12:00 to 25/06/2012 12:00 hrs (from Tristram et al., 2015).

Figure 8.4 shows the spatial distribution of temperature deviation from the mean cable temperature at the upper and buried cables. These deviations are based on the mean temperature deviation of the full FO-DTS monitoring survey. This mapping shows substantial differences in the magnitude and spatial distribution of deviation from the mean temperature between the two depths (Figure 8.4). The range in the deviation of lakebed temperatures (the upper cable) from the spatial mean was approximately 0.3-0.6 °C. However, the survey showed a discrete location (cold spot) in the eastern side of the lake where temperatures were approximately 1.8°C cooler than the spatial mean (Figure
8.4. In contrast to the narrow range of deviations from the mean at the lakebed, the temperature deviations at the buried cable were larger. The deviation from the spatial mean at the fine-grained lakeshore were highly variable, and varied between -1.3 to +0.3 °C. Conversely, the deviations in the coarse-grained (western) lakeshore were more homogenous, and exceeded the mean temperature by approximately 0.4 °C. In addition to those broad patterns, Figure 8.4 also highlights two discrete cold spots at the buried cable, situated to the north and east of VTP1, where temperatures were approximately 1.7 °C lower than the spatial mean (Figure 8.4).

![Figure 8.4](image)

Figure 8.4. The averaged deviation from the mean temperature along the lakebed (upper cable) and at 0.10 m below the lakebed (buried cable).

The data is based on the FO-DTS monitoring between 24/06-25/06/2012.

8.4. Pore-water temperature dynamics at the IL

Pore-water temperatures were monitored using HOBO temperature loggers which were arranged in three Vertical Temperature Profiles (VTP) (Figure 3.19). Each VTP consisted of three temperature probes which were inserted at three depths (0.10 m, 0.25 m, and 0.40 m) below the lakebed. Strong diurnal oscillations in pore-water temperatures were observed in all three VTP locations. The largest temperature oscillations were observed at
0.10 m depth whilst oscillations at 0.40 m depth were negligible. This indicates that pore-water thermal stability increases with depth (e.g. Krause et al., 2011b; Tristram et al., 2015). The largest diurnal oscillations were observed at VTP\(_2\). The smallest differences in mean pore-water temperature between 0.10 m and 0.25 m (0.25 °C) and 0.25 m to 0.40 m depth (1.12 °C) were also measured at VTP\(_2\). The lowest diurnal oscillations were measured at VTP\(_3\) where absolute temperatures were generally higher than at VTP\(_1\) and VTP\(_2\). The mean diurnal oscillation of pore-water temperatures at 0.10 m depth at VTP\(_1\) was 1.06°C. It then attenuated with depth to ~ 0.49°C at 0.25 m depth and ~0.23°C at 0.40 m depth (Figure 8.5).

Figure 8.5. Box plots of temperature at the three VTP.

The horizontal lines denote the minimum, Q1, Q3, and the maximum. The thick grey line denotes the median. The figure shows the three depths (10, 25, 40 cm) in each VTP.

Pore-water temperatures have corresponded to changes in air temperature (Figure 8.6). The response of pore-water temperatures at 0.10 m was the closest, followed by 0.25 m and 0.40 m. However, the 0.40 m below the lakebed showed a very damped response to
changes in air temperature. The differences in pore-water temperatures between 0.10 m and 0.25 m were more pronounced when air temperature was high. This is illustrated by the differences between pore-water temperature at 0.10 m and 0.25 m on the 21/06/2012 (when air temperature rises) and the 30/06/2012, when air temperature falls (Figure 8.6).

Figure 8.6. Mean hourly air temperature at the field site (green line) and pore-water temperatures at VTP 1-3.

Air temperature was measured at the Skaftafell IMO (2013) station (situated approximately 5 km from the fieldsite. The locations for each VTP are shown in Figure 3.15.
8.5. Quantification of groundwater fluxes

8.5.1. Groundwater fluxes (temperature-based) obtained from VTP

The daily groundwater fluxes (Figure 8.7) were calculated from each VTP using the methods of Tristram et al. (2015). Daily groundwater fluxes varied between 0.33 to 6.10 m/day. The highest mean groundwater fluxes were calculated at VTP₁. The mean fluxes at VTP₂ exceeded those at VTP₁ by 0.16 m/day. However, the standard deviation of groundwater fluxes at VTP₂ was approximately 0.55 m/day lower than VTP₁ and VTP₃.

The inputs for sediment thermal properties which were used in Equation 8.2-8.4 were adjusted in order to address the substantial differences in sediment grain size at the three locations (Table 8.1). However, despite the significant difference in grain size between the VTP locations, the calculated VTP fluxes in all three VTP were generally within the same order of magnitude (1x 10⁰ m/day). Furthermore, an ANOVA analysis (at 5% confidence level, \(p=0.17\)) has shown that the mean seepage fluxes between the three VTP were not significantly different from each other.

Table 8.4. Groundwater fluxes calculated from the VTP

<table>
<thead>
<tr>
<th>Groundwater flux (m/day)</th>
<th>VTP₁ (fine)</th>
<th>VTP₂ (coarse)</th>
<th>VTP₃ (fine)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>3.60±1.88</td>
<td>3.77±1.38</td>
<td>4.34±1.93</td>
</tr>
<tr>
<td>Max.</td>
<td>6.10</td>
<td>5.31</td>
<td>6.10</td>
</tr>
<tr>
<td>Min.</td>
<td>1.02</td>
<td>1.33</td>
<td>0.33</td>
</tr>
</tbody>
</table>

The results of the VTP from the IL are compared against reported rates of groundwater fluxes which were obtained from pore-water temperatures in lakes located within deglaciated areas in Denmark and Finland. The groundwater fluxes which were calculated from the VTP in the IL were within the same orders of magnitude as the mean groundwater discharge fluxes which were calculated from temperature profiles in Lake Væng in Denmark (1.4x10⁻¹ to 1.21x10⁰ m/day), which is connected to an unconfined,
medium-coarse sands and gravels aquifer (Sebok et al., 2013). The mean groundwater fluxes based on temperature profiles in another study from Lake Væng were also within the same order of magnitude (1.5x10^{-1} m/day) (Kidmose et al., 2013). Groundwater discharge at this site has also showed clear seasonal variability, with winter fluxes (mean of 1.21x10^{0} m/day) exceeding summer fluxes (1.6x10^{-1} m/day) by an order of magnitude (Sebok et al., 2013).

![Groundwater fluxes from VTP1-VTP3](image)

Figure 8.7. Groundwater fluxes (m/day) from VTP1-VTP3.

VTP1 and VTP3 are located in fine-grained sediment. Location VTP2 is located in coarse-grained lakeshore.
8.5.2. **Groundwater (Darcian) fluxes from hydrogeological measurements**

The Vertical Hydraulic Gradient (VHG) at the IL varied between +0.011 to +0.632 (unitless). With the exception of L4 and L6 on the 31/08/2012, all the VHG during this study were positive. This implies continuous groundwater discharge into the lake (e.g. Rautio and Korkka-Niemi, 2011). The Darcian groundwater fluxes varied between 1.52×10^{-4} and 1.7×10^{1} m/day (Figure 8.8). In contrast to the relatively small variability (one order of magnitude) in the VTP fluxes (Figure 8.7), the Darcian fluxes showed substantial differences in groundwater discharge between the coarse (SN) and fine (CN, L4-6) grained lakeshores. Seepage fluxes at the coarse-grained lakeshore varied between 2.56×10^{0} and $7.08 \times 10^{0} \pm 2.59$ m/day. The fluxes from the fine-grained lake shore varied between 1.52×10^{-4} and $3.02 \times 10^{-2} \pm 0.002$ m/day. Groundwater fluxes from the coarse-grained lakeshore exceeded those from the fine-grained by approximately four to five orders of magnitude (Figure 8.8). The fluxes at the coarse-grained lakeshore were significantly higher (one tail t test, 2.5% significant level, $p = <0.001$) than those from the fine-grained lakeshore. In addition to these general patterns, the mean groundwater fluxes at the proxies for VTP$_3$ (L4 and L5) were significantly different (two tails t test, 2.5% S.L. $p = <0.001$) and higher by an order to two orders of magnitude than the fluxes obtained from the proxies for VTP$_1$ (Clay Nest and L6) (Table 8.5). Furthermore, groundwater fluxes at L4 and L5 were also more responsive to changes in lake levels showing a greater increase in flux with an increase in lake stage (Figure 8.8).
Chapter 8

Aquifer-lake exchange

Table 8.5. Comparison between the Darcian and VTP groundwater fluxes

The table compares the mean fluxes calculated from the VTP (in brackets) with the Darcian fluxes of the proxy location for each VTP. Note that the data for the piezometer nests is the mean flux from the three different depths. All locations had 17 samples.

<table>
<thead>
<tr>
<th>Proxy location</th>
<th>VTP 1 (3.60x10^0 ±1.88)</th>
<th>VTP 1 (3.60x10^0 ±1.88)</th>
<th>VTP 2 (3.77x10^0±1.38)</th>
<th>VTP3 (4.34 x10^0±1.93)</th>
<th>VTP3 (4.34 x10^0±1.93)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Darcian Fluxes for the proxy (m/day)</td>
<td>6.71x10^-3 ± 3.87x10^-4</td>
<td>5.58x10^-3 ± 4.37x10^-4</td>
<td>7.08x10^-3 ± 2.59x10^-3</td>
<td>3.48259x10^-3 ± 8.62x10^-3</td>
<td>3.24x10^-3 ± 4.70x10^-3</td>
</tr>
</tbody>
</table>

The temporal variability of the Darcian fluxes has shown that these fluxes generally followed the changes in lake levels, notably the increase in lake levels around the 24/07/2012, the increase in lake levels at the beginning of the second monitoring period (23/08/2012) and the decline in lake levels at the end of August (Figure 8.8). In summary, the seepage fluxes for the VTP were significantly higher than the Darcian fluxes calculated from the proxy locations for the VTP (Table 8.5). However, the variability in the Darcian fluxes was much higher than the VTP fluxes, with groundwater fluxes at the coarse-grained lakeshore substantially exceeding those from the fine-grained lakeshores (Figure 8.8).
Figure 8.8. Comparison of Darcian groundwater fluxes from the coarse-grained (filled black shapes) and fine-grained (grey shapes) lakeshores. Note the logarithmic scale.

The different piezometers where the VHG were determined also served as proxy locations for fluxes obtained with VTP (see legend). The Figure also shows the temporal variability in groundwater fluxes, presented against the level of the IL. The gap between the 30/07/2012 and the 24/08/2012 is due to the lack of manual measurements of lake levels during the period in which the field site was not manned.

8.6. Discussion

8.6.1. Method comparison between VTP and Darcian fluxes

The current study combined temperature tracing of lakebed and lake pore-water temperatures with hydrogeological measurements for the investigation of the spatial and temporal dynamics of aquifer-lake exchange at the Instrumented Lake. Darcian fluxes, which are based on VHG, have been previously combined with seepage meters (e.g. Smerdon et al., 2005) and FO-DTS in order to investigate groundwater-lake exchange in rivers (Krause et al., 2012) and lakes (Blume et al., 2013). However, VHG in many of
these studies were only used as indicators for the direction of groundwater flow (e.g. Rautio and Korkka-Niemi, 2011; Kidmose et al., 2011). The only known study, to date, that has quantified groundwater fluxes using both VTP and Darcian fluxes obtained from VHG was done by Blume et al. (2013).

The seepage fluxes which were calculated from the VTP temperature data were not significantly different between the three locations. This lack of significant differences is despite of the different sedimentology in each location (Table 8.2). Conversely, the groundwater fluxes which were calculated from hydrogeological measurements (Darcian fluxes) for the coarse-grained lake shore exceeded the fluxes from the fine-grained lakeshore by four orders of magnitude and were significantly different (Figure 8.8). Similar patterns, in which groundwater fluxes obtained from hydrogeological measurements are generally lower and more variable than fluxes obtained from temperature profiling, were also reported in the literature. A study from Lake Væng, Denmark, has shown that seepage meters and temperature tracing have yielded similar mean and maximum summer fluxes (1.6-6.2x10^−1 m/day). However, the minimum fluxes for the seepage meters were lower than fluxes calculated from the temperature profiles by two orders of magnitude (2.7x10^−3 m/day) (Sebok et al., 2013). Relatively high spatial variability in groundwater fluxes which were obtained from seepage meters has also been reported from Lake Pyhäjärvi, located in an esker aquifer in SW Finland, where groundwater fluxes varied over three orders of magnitude (4.05 x10^−2 to 4.15 x10^0 m/day) (Rautio and Korkka-Niemi, 2011). A study of hydrological exchange between groundwater and wetlands in SW Wisconsin has also shown that groundwater fluxes calculated using Darcy’s law were an order of magnitude lower (2.00x10^−4 to 3.00x10^−3 m/day) than fluxes estimated from temperature profiles and water balance modelling (1.00x10^−3 to 1.10x10^−2 m/day) (Hunt et al., 1996). Studies of river-aquifer exchange also reported substantial differences between fluxes obtained from hydrogeological methods and temperature tracing. For instance, investigations of river-aquifer exchange from the Munsan stream, Paju-si, South Korea,
Chapter 8 Aquifer-lake exchange

where streambed hydraulic conductivity varied between four orders of magnitude (1.82x10^{-3} to 4.20x10^{0} m/day), have shown that estimations based on Darcy’s Law were approximately three orders of magnitude lower than those based on temperature profiles (Hyun et al., 2011). However, contrasting results to the discrepancy between Darcian and temperature-based fluxes have also been reported. For instance, a different study from Lake Væng in Denmark reported that groundwater fluxes obtained from temperature profiles were very close to those obtained from seepage meters (3.00x10^{-3} to 7.45x10^{0} m/day) (Kidmose et al. 2013).

The significant differences between the Darcian and the VTP fluxes suggest that the VTP fluxes were less sensitive to the substantial differences in sediment properties between the three locations (Table 8.2). These observations support previous research which reported that the range of sediment thermal properties (Equation 8.2-8.4) is much narrower and more confined than the range of hydrogeological parameters (e.g. Stonestrom and Constantz, 2003; Lautz, 2010). It is therefore suggested that the substantial differences between the Darcian fluxes are attributed to the high spatial variability in hydraulic conductivity around the IL (Figure 5.9), which is common within proglacial environments (e.g. Robinson et al., 2008).

In addition to the results from the Skaftafellsjökull foreland, the impact of spatial variability in lakebed hydrogeology on aquifer-lake exchange has also been reported from Lake Opabin in the Canadian Rockies, where sections of the lake underlain by low permeability material were suggested as unlikely to contribute significant groundwater fluxes. Conversely, field evidence suggested that a large moraine served as the main source of groundwater to and from the lake (Roy and Hayashi, 2008). Studies from Lake Georgetown, a high elevation lake in Montana, reported substantial spatial variability in groundwater-lake exchange, which was attributed to the spatial differences in geology and sedimentology. Groundwater discharge into the lake took place in an area of fractured limestone. Conversely, no groundwater discharge was detected in areas underlain by
Chapter 8

Aquifer-lake exchange

metasedimentary bedrock. These spatial differences in aquifer-lake exchange have also significantly impacted lake biogeochemistry and water quality (Shaw et al., 2013). The impact of spatial heterogeneity in hydrogeological parameters has also been reported from riverbeds. For instance, The spatial variability in Darcian fluxes from a streambed in Ontario which is underlain by sand and clay deposits, where hydraulic conductivity varied by four orders of magnitude, were up to five orders of magnitude (Conant, 2004).

Therefore, the significant differences in groundwater fluxes at the IL (Figure 8.8) provide further evidence of the impact of high hydrogeological heterogeneity on the spatial variability in groundwater-surface water exchange. It is therefore suggested that the differences in the Darcian fluxes have been attributed to the differences in hydrogeological parameters around the IL (Figure 5.9). Furthermore, the small differences between the temperature-based fluxes suggest that, despite the adjustment of the perimeters in Equation 8.2 (Table 8.1), this method is not sensitive for the variability in lakebed sedimentology which occurs at the IL. This suggestion is also supported by numerical modelling of the impact of sediment heterogeneity on groundwater fluxes obtained from temperature data, which suggested that simple methods that analytically solve the heat flow equation fail to provide reliable exchange fluxes in areas of high sediment heterogeneity and significant contrasts in hydraulic conductivity (Schornberg et al., 2010).

The discrepancy between the calculated fluxes from the VTP and the Darcian fluxes has significant implications on the interpretation of the dynamics of groundwater exchange with the IL. The fluxes obtained using VTP suggest that groundwater discharge around the lake is fairly homogenous (Figure 8.7), regardless of lakebed sediment characteristics (Table 8.2). Conversely, the Darcian fluxes suggest that groundwater discharge at the coarse-grained lakeshore is significantly higher than the fine-grained lakeshore (Figure 8.8). Due to the control of hydraulic conductivity on aquifer-lake exchange (e.g. Roy and Hayashi) and in light of the high heterogeneity in hydrogeological parameters around the IL (Figure 5.9), it is suggested that the Darcian fluxes give a more accurate representation
of groundwater-lake exchange at the IL than the temperature-based fluxes, which do not reflect the variability in lakebed sedimentology. The heterogeneity in groundwater discharge is also supported by the FO-DTS survey, which suggests that enhanced groundwater discharge at the fine-grained lakeshore takes place through discrete zones, which were identified by the cold spots (Figure 8.4). The results obtained by the Darcian fluxes were therefore used for describing the spatial patterns of lake-aquifer exchange at the IL.

8.6.2. Spatial patterns of proglacial aquifer-lake exchange

The high resolution mapping of lakebed temperatures using FO-DTS and the quantification of groundwater seepage fluxes were used to delineate proglacial aquifer-lake exchange at the IL. The FO-DTS mapping of lakebed and sediment temperatures highlighted distinct cold spots, which were located in the northern and eastern lakeshores (Figure 8.4). Groundwater temperatures at the site were significantly lower than lake temperatures (Table 6.3, 6.4). Hence, it is suggested that these cold-spots can be attributed to enhanced groundwater upwelling (Rautio and Korkka-Niemi, 2011; Sebok et al., 2013). As this area of the lake is underlain by approximately 0.50 m of fine-grained sediment with low hydraulic conductivity (Chapter 5), this detected upwelling possibly takes place through preferential flow paths within the confining clay layer (e.g. Conant, 2004) or due to cracks in the fine-grained layer which were caused during the installation of the FO-DTS cable (e.g. Rosenberry et al., 2010; Blume et al., 2013). In addition to the cold spots below the lakebed in the eastern lakeshore, a cold spot which was also identified on the lakebed (the upper FO-DTS cable) has also been detected (Figure 8.4). However, this cold spot did not propagate underneath the lakebed, suggesting the lack of groundwater upwelling at this location. It is suggested that the colder temperature at this spot is possibly due to vegetation cover and a deeper lakebed (Tristram et al., 2015).
Groundwater and surface water geochemistry and stable isotope composition suggest that precipitation, rather than meltwater, is the dominant source of groundwater at the site (Chapter 6). Despite the small proportion of groundwater recharge from meltwater, the configuration of hydraulic heads in the transect has shown that groundwater flows towards the IL (Figure 7.8). This area has been identified as a local groundwater system, which is imposed on the regional groundwater flow system (Figure 7.7). The significantly-higher groundwater fluxes at the western (coarse-grained) lakeshore and the west-east flow direction of the local groundwater flow system suggest that this system feeds most of the groundwater discharge into the lake (Figure 8.9). The low seepage fluxes at the fine-grained lakeshore (VTP₁ and VTP₃) suggest that the confining layer on that side impedes groundwater discharge into the lake in this area. The small fluxes at the fine-grained (eastern) lakeshore suggest that the small moraines that surround the IL from the North, East, and West do not contribute significant groundwater fluxes to the IL. This hypothesis is supported by observations of the complex internal hydrology of moraines (e.g. Langston et al., 2013; Bajc et al., 2014). However, further investigation is needed in order to determine the contribution of the moraines to lake hydrology. A conceptual model of the controls and impacts of proglacial aquifer/lake exchange is presented in Figure 8.10.
Figure 8.9. Schematic representation of recharge and aquifer-lake exchange at the IL. The model is not drawn to scale.

Figure 8.10. A conceptual model of the controls and impacts of proglacial aquifer/lake exchange
8.7. Conclusions

This study combined hydrogeological measurements (Darcian fluxes) with environmental temperature tracing techniques (FO-DTS and VTP) in order to delineate the spatial and temporal variability of aquifer-lake exchange and to quantify this exchange. Despite significant differences in hydraulic conductivity between the VTP locations, their mean groundwater fluxes were all within one order of magnitude, and not significantly different. Conversely, the Darcian fluxes from the coarse-grained lakeshore exceeded those from the fine-grained lakeshore by four orders of magnitude. These results support previous studies that reported similar discrepancies between groundwater fluxes obtained from temperature and hydrogeological measurements. The Darcian fluxes were therefore used to construct a conceptual model of river-aquifer-lake exchange at the Skaftafellsjökull margin.

Groundwater discharge from the local groundwater flow system which flows from west to east (Chapter 7) appears to be the main source of groundwater for the IL. Aquifer-lake exchange at this lakeshore is relatively high. Conversely, the exchange at the fine-grained lakeshore is lower by several orders of magnitude. The temperature mapping of the lakebed suggests that groundwater-lake exchange at that lakeshore occurs in discrete locations, possibly through preferential flow paths.
9. Conclusions

9.1. Summary of main findings

This study investigated groundwater-surface water exchange in the proglacial zone of two retreating glaciers in SE Iceland. The findings of this study are important in light of the observed impact of groundwater-surface water exchange on proglacial hydrology, geomorphology and water quality. Furthermore, this study has also shown the importance of precipitation and glacier margin fluctuations, which are projected to alter due to climate change and glacier retreat.

The first part of this study investigated the impact of fluctuations in glacier margin position on proglacial groundwater levels and the spatial extent of groundwater seeps (objective i). The western Skeiðarárjökull margin has retreated approximately 1 km between during the study period (1986-2012). Changes in the extent of groundwater seeps were mapped from aerial photographs, which showed a 97% decline in seep extent. The extent of seeps was also impacted by the November 1996 jökulhlaup, whose deposits buried 18% of the area of groundwater seeps at the site. Proglacial groundwater levels also substantially declined between 2000 and 2012, with observed declines exceeding 1.5 m in many locations, with groundwater levels in most piezometers falling below the intake. However, the decline in groundwater levels has shown considerable spatial variability.

The regional groundwater flow at the Skaftafellsjökull margin is from north to south, away from the glacier margin. However, deviations from this pattern have also been identified. The main local groundwater system flows from west to east toward the Instrumented Lake (IL), perpendicular to the river Skaftafellsá. The PSA and slug tests results showed high variability in hydrogeological characteristics, caused by the different geomorphic processes which are active at this environment. The hydraulic conductivity (K) at the Skaftafellsjökull foreland varied over seven orders of magnitude. This high variability in
Chapter 9

Conclusions

Hydraulic conductivity has led to substantial heterogeneity in proglacial groundwater-surface water exchange.

Substantial differences in hydrogeology and water quality were observed between the Northern and Southern Oasis. The hydraulic conductivity at the Southern Oasis exceeded that of the Northern Oasis by five orders of magnitude. The solute concentrations at the Northern Oasis are significantly lower than that of the Southern Oasis. It is therefore hypothesised that the Northern Oasis is perched and mainly precipitation-fed. Hence, aquifer-lake exchange at the Northern Oasis is low.

Conversely, the Southern Oasis is generally underlain by glaciofluvial sediments, with mean hydraulic conductivity of $\sim 2.51 \times 10^1$ m/day. It is suggested that the higher hydraulic conductivity led to substantial groundwater-lake exchange at the Southern Oasis lakes. However, high variability in hydrogeological parameters was also observed at the Southern Oasis, with some areas of the IL underlain by fine-grained deposits.

The third part of this study investigated the sources of groundwater recharge (objective iii) and the temporal and spatial dynamics of hydrological exchange between meltwater, groundwater, and lakes (objectives iv and v). Groundwater levels at the transect, have shown high response to fluctuations in meltwater levels, with the response generally dampened with increasing distance from the river. These dynamics suggest high levels of exchange between the meltwater river and the aquifer.

However, this hypothesis is contested by the substantial differences in water quality and stable isotope composition between transect groundwater and meltwater. Groundwater solute concentrations and isotopic composition at the transect were significantly higher and heavier, respectively. These significant suggest relatively low rates of aquifer-meltwater exchange. It is therefore hypothesised that the coupling between the response in hydraulic heads and meltwater levels is due to other factors, such as the propagation of pressure waves, rather than actual entrance of water into the aquifer.
Chapter 9

Conclusions

Similar dynamics of high response between hydraulic heads and fluctuations in meltwater levels alongside significantly different water quality were also observed at the river Súla in western Skeiðarársandur during small jökulhlaups. This suggests that, despite the different geomorphology of the two proglacial zones, fluctuations in meltwater levels are an important control on hydraulic heads during high discharge events. These processes have been observed at the Skaftafellsjökull foreland during both ablation-controlled meltwater flow regime and episodic floods. Conversely, the fluctuations in hydraulic heads at the river Súla were only observed during the small jökulhlaups. However, the lack of fluctuation in hydraulic heads between during ablation-controlled flow regime can possibly attributed to the distance of GW4 from the Súla channel (~ 250 m), which is larger than the distance at the Skaftafellsjökull foreland (69 m away for the furthest piezometer).

Groundwater recharge sources were investigated using water stable isotopes (objective iii). Groundwater isotopic composition was generally heavier than that of meltwater, and located close to the composition of the LMWL. This suggests that precipitation is the main source for groundwater recharge at the Skaftafellsjökull foreland. The importance of precipitation in groundwater and surface water recharge has also been supported by the substantial differences in lake levels between the different precipitation levels in 2012 (dry) and 2013 (very wet).

The spatial variability in proglacial aquifer-lake exchange was investigated at the IL using temperature tracing and hydrogeological methods (objective v). The FO-DTS mapping revealed discrete points of colder-than-average temperatures. Due to the significant differences between groundwater and surface water temperatures, these spots were inferred as discrete locations of cold groundwater upwelling into the IL. The FO-DTS has also highlighted the differences between the eastern (fine-grained) and western (coarse-grained) lakeshores. The temperatures at the coarse-grained lakeshores were relatively homogenous, suggesting a relatively uniform groundwater discharge. Conversely, the FO-DTS detected two locations of which were approximately 1.8 °C cooler than the mean
temperature. It is suggested that these cold spots are discrete locations of enhanced groundwater upwelling, in contrast to the low upwelling in the rest of the fine-grained (eastern) lakeshore.

Groundwater seepage into the IL was quantified using a temperature-based method (VTP) and hydrogeological measurements. Despite substantial differences in lakebed sedimentology between the three VTP locations, groundwater fluxes from all three VTP were within the same order of magnitude. Conversely, the Darcian fluxes from the coarse-grained location exceeded those from the fine-grained locations by three orders of magnitude. These differences were attributed to the substantial heterogeneity in hydrogeological parameters around the IL. It is hypothesised that most groundwater in the lake originate from a local groundwater flow system. These observations highlight the relatively high exchange between the aquifer and the IL.

9.2. Wider implications

9.2.1. Spatial heterogeneity in proglacial hydrogeology

This study highlighted the high spatial variability in proglacial hydrogeology. The variability in proglacial hydrogeology at the Skaftafellsjökull margin has been attributed to the range of glacial, glaciofluvial, and lacustrine processes operating (e.g. Marren 2002a, b; Marren and Toomath, 2013). In addition to the aforementioned processes, the hydrogeology and geomorphology of western Skeiðarársandur are also impacted by glacial surges, jökulhlaups and aeolian processes (e.g. Russell et al., 2006). This observed variability leads to high heterogeneity in proglacial groundwater-surface water exchange.

The widely observed heterogeneity in hydrogeological parameters also imposes significant challenges for the numerical modelling of proglacial groundwater flow systems. Many groundwater flow models treat proglacial groundwater systems as homogenous
Chapter 9

Conclusions

(e.g. Boulton and Dobbie 1993). However, the complexities and heterogeneities which have been reported from various proglacial settings, including the current study, suggest that these assumptions are usually violated. Furthermore, due to this heterogeneity, obtaining accurate data on groundwater flow rates and the hydraulic properties of proglacial deposits is a substantial challenge (Tague and Grant, 2009; Person et al., 2012; Langston et al., 2013). The hydrogeological parameters which were obtained at this study (Chapter 5), can therefore be used as boundary conditions and input parameters for numerical models of proglacial groundwater flow and groundwater-surface water exchange.

9.2.2. Implications of climate change and glacier retreat on proglacial groundwater-surface water exchange

Climate change models project a general increase in air temperatures and glacier retreat in regions dominated by snow and icemelt. These changes are projected to substantially impact the hydrology of such catchments (e.g. Barnett et al., 2005). Glacier retreat is projected to alter the composition of proglacial discharge, with increasing contributions from snowmelt, rainfall, and groundwater at the expense of icemelt (e.g. Blaen et al., 2013; 2014). These changes are projected to have significant impacts on proglacial hydrology, biogeochemistry, physicochemical parameters and ecology (e.g. Cauvy-Fraunié et al., 2013). Most climate models for Iceland also project an increase in precipitation and temperatures over the 21st century, with the highest increases during winter (e.g. Nawri and Björnsson, 2010). These changes are also projected to increase glacier retreat (e.g. Jóhannesson et al., 2006). In addition to its impact on the extent of the Icelandic icecaps, glacier retreat is also projected to alter proglacial hydrology (Flowers et al., 2003; 2005), hydrogeology (e.g. Robinson et al., 2008), and geomorphology (Marren and Toomath, 2013). Despite an initial increase, the falls in glacier volume and ice slope,
caused by glacier retreat, are expected to reduce meltwater generation (e.g. Flowers et al., 2005) and groundwater flow, caused by the shallower hydraulic gradient (e.g. Haldorsen and Heim, 1999; Haldorsen et al., 2010; 2012). A reduction in groundwater flow following glacial retreat has been hypothesised to be a major cause for the substantial decrease in the extent of groundwater seeps and groundwater levels in western Skeiðarársandur (Levy et al., 2015).

In addition to glacier retreat, climate change projections also suggest an alteration in precipitation patterns and timing. These projections include an increase in the rain/snow ratio, which will increase winter runoff and reduce snow storage, and cause earlier snowmelt, which will lead to an earlier peak in runoff (e.g. Adam et al., 2009; Stewart et al., 2009). These impacts are projected to substantially alter surface water quality and the timing, magnitude and quality of groundwater recharge (e.g. Okkonen and Kløve, 2009; 2010; 2012; Fortner et al., 2011).

Precipitation has been identified as the main source of groundwater recharge at the Skaftafellsjökull foreland (section 6.5.1). In addition to the impacts on lake water balance, fluctuating lake levels, which are caused by fluctuations in precipitation, can also lead to small scale changes in lake hydrogeology. For instance, the dry conditions in 2012 led to a fall in lake levels, which exposed significant sections of the lakeshores. These exposures can lead to the desiccation of confining clay layers, with the newly forming cracks possibly forming preferential flow paths for groundwater upwelling (such as the cold spots at the IL [Figure 8.4]). The discharge of cold, nutrient-rich groundwater into the lake via such flow paths can impact lake physicochemical parameters and ecology (e.g. Roy et al., 2011).
9.2.3. Methodological implications

Groundwater and surface water temperatures, geochemistry and stable isotopes provided effective, relatively low cost techniques to investigate various hydrological topics in an array of settings (e.g. Robinson et al., 2009a, b). This study has combined these methods with traditional hydrogeological methods and novel temperature tracing techniques in order to investigate the temporal and spatial dynamics of proglacial river-aquifer and lake-aquifer exchange. These methods also showed spatial and temporal heterogeneities in the exchange between groundwater, rivers, and lakes and highlighted small scale variability such as preferential flow paths. However, this study has also highlighted the importance of using multiple methods when investigating groundwater-surface water exchange (Hunt et al., 1996; Blume et al., 2013). This was illustrated by the contrasting observations between the hydraulic heads (Chapter 7) and the geochemistry and isotopic data (Chapter 6) with regards to the level of aquifer-meltwater exchange. The importance of combining several methods has also been highlighted when investigating groundwater discharge around the IL, where temperature tracing and the hydrogeological methods provided contrasting results. In summary, the methods used in this study helped to unmask processes and increase the understanding of the complex temporal and spatial heterogeneity of proglacial groundwater-surface water exchange. However, hydrogeological methods should be corroborated by other methods, such as geochemical or temperature tracing.

9.3. Further research

This research has highlighted the controls and the high spatial and temporal heterogeneity of proglacial groundwater-surface water exchange. Additionally, it has also highlighted the importance of groundwater discharge to surface water bodies and the relatively transient
nature of proglacial groundwater-fed bodies. This study can be advanced further by pursuing further research:

- The installation of deeper piezometers, especially closer to the glacier margin at Skaftafellsjökull, in order to improve the understanding with regards to the impact of glacier margin position on proglacial groundwater flow. Monitoring over longer time periods, particularly winter and spring, will also help to investigate groundwater dynamics during baseflow conditions and the impact of snowmelt on proglacial groundwater-surface water exchange.

- Improved understanding of the hydrogeology of the site, particularly delineating the internal structures of proglacial landforms, such as moraines, and their impact on proglacial groundwater flow. This can be done using various geophysical techniques (e.g. Muir et al., 2011).

- Further investigation of river-aquifer exchange. This can be done using tracers such as radon, in order to calculate groundwater residence times (e.g. Magnusson et al., 2014) and to improve the understanding with regards to the contribution of meltwater to groundwater and the lakes at the Skaftafellsjökull foreland.

- Ecological survey of flora and fauna of the Skaftafellsjökull foreland. Due to the differences in aquifer-lake exchange between the Northern (inferred low aquifer-lake exchange) and Southern Oasis lakes (inferred relatively high aquifer-lake exchange), an ecological survey will help to assess the impacts of the difference in groundwater contributions to the ecology of each site.

- Numerical modelling of the impact of climate change and glacier retreat on proglacial groundwater-surface water exchange.
References

References

References

References

References

References

References

References

References

Einarsson B, Jónsson S. 2010b. Improving groundwater representation and the parameterization of glacial melting and evapotranspiration in applications of the WaSiM hydrological model within Iceland. Iceland Meteorological Office Report VI 2010-017.

Fay H. 2002. The formation of ice-block obstacle marks during the November 1996 glacier outburst flood (jökulhlaup), Skeiðarársandur, southern Iceland. In *Flood and Megaflood
References

References

References

References

References

subsurface water exchange in mountain catchments. *Water Resources Research* **29**: 89–
98.

water–groundwater interactions using time series analysis of streambed thermal records:

streambed hydraulic conductivity quantified with time series thermal methods. *Journal of
Hydrology* **389**:276-288. DOI: 10.1016/j.jhydrol.2010.05.046.

Hayashi M. 2004. Temperature-Electrical Conductivity relation of water for environmental
monitoring and geophysical data inversion. *Environmental Monitoring and Assessment* **96**:
119-128.

Hayashi M, Vogt T, Mächler L, Schirmer M. 2012. Diurnal fluctuations of electrical
conductivity in a pre-alpine river: Effects of photosynthesis and groundwater exchange,
Journal of Hydrology **450-451**: 93-104 DOI: 10.1016/j.jhydrol.2012.05.020

Hazen A. 1892. Physical properties of sands and gravels with reference to their use in

Henderson AK, Shuman BN. 2009. Hydrogen and oxygen isotopic composition of lake-

Henderson AK, Shuman BN. 2010. Differing controls on river and lake-water hydrogen and
oxygen isotopic values in the western United States. *Hydrological Processes* **24**: 3894–
3906

20: 162-169.

26: 607-614.

Hendry MJ., Barbour SL, Novakowski K, Wassenaar Li. 2013. Paleohydrogeology of the

with different alpine stream types. *Arctic, Antarctic and Alpine Research* **33**: 447-456. DOI:
10.2307/1552555

Hindshaw RS, Tipper ET, Reynolds BC, Lemarchand E, Wiederhold JG, Magnusson J,
Bernasconi SM, Kretzschmar R, Bourdon B. 2011. Hydrological control of stream water
chemistry in a glacial catchment (Damma Glacier, Switzerland). *Chemical Geology* **285**:

calcium isotopic composition of rivers draining basaltic catchments in Iceland. *Earth and
References

References

References

References

References

References

Landmælinger Íslands [LMÍ], the Icelandic Geodetic Service 1978, 1997.

References

Leica TPS1200. user manual 2004.

References

References

References

References

Ó Dochartaigh BÉ. 2012. Personal communication

Ogmundsson, G. personal communication, May 2013.

References

References

References

References

Schmidt A, Gibson JJ, Santos IR, Schubert M, Tattrie K, Weiss H. 2010. The contribution of groundwater discharge to the overall water budget of two typical Boreal lakes in
References

References

Skaftafell Sérkort 5 hiking map . 2009. Published by Mál og menning/Forlagið

References

The Icelandic Geodetic Survey, Landmælingar Íslands (LMÍ).

The Icelandic Glaciological Society (IGS) database. 2013.

The Icelandic Meteorological Office (IMO) [Veðurstofa Íslands] (2013).

References

References

Vicuña S, McPhee J, Garreaud R. 2012. Agriculture vulnerability to climate change in a snowmelt-driven basin in semiarid Chile. Journal of Water Resources Plan and Management. 138: 431-441. DOI: 10.1061/(ASCE)WR.1943-5452.0000202

Wiśniewski E, Andrzejewski EL, Molewski P. 1997. Fluctuations of the snout of Skeiðarárjökull in Iceland in the last 100 years and some of their consequences in the central part of its forefield. *Landform Analysis* **1**: 73–78.
References

Appendices

<table>
<thead>
<tr>
<th>Western Skeiðarársandur</th>
<th>Elevation (mAD)</th>
<th>Skaftafellsjökull</th>
<th>Elevation (mAD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>datum 1-ZR P3 1m west</td>
<td>82.62</td>
<td>T3</td>
<td>100.08</td>
</tr>
<tr>
<td>datum 1-ZR P32m east</td>
<td>82.78</td>
<td>P11</td>
<td>99.92</td>
</tr>
<tr>
<td>datum1-ZR P4 2nd pipe</td>
<td>86.14</td>
<td>L8</td>
<td>100.52</td>
</tr>
<tr>
<td>datum- GW1</td>
<td>86.26</td>
<td>GW8</td>
<td>100.39</td>
</tr>
<tr>
<td>datum1 AL P3100</td>
<td>80.14</td>
<td>L1</td>
<td>100.18</td>
</tr>
<tr>
<td>datum1-AL P3150</td>
<td>79.56</td>
<td>L2</td>
<td>99.99</td>
</tr>
<tr>
<td>datum1- P8</td>
<td>79.99</td>
<td>L3</td>
<td>100.14</td>
</tr>
<tr>
<td>datum1-datum 2 (nr. GW2 lake) foresight</td>
<td>81.20</td>
<td>L4</td>
<td>100.15</td>
</tr>
<tr>
<td>datum 2 -datum 1 (backsight)</td>
<td>95.36</td>
<td>L5</td>
<td>100.46</td>
</tr>
<tr>
<td>datum2-GW2</td>
<td>94.17</td>
<td>L6</td>
<td>99.99</td>
</tr>
<tr>
<td>datum3-GW2</td>
<td>76.61</td>
<td>L7</td>
<td>100.28</td>
</tr>
<tr>
<td>datum3- P13 (western pipe)</td>
<td>76.94</td>
<td>Sand50</td>
<td>100.28</td>
</tr>
<tr>
<td>datum3- P13 central pipe)</td>
<td>77.53</td>
<td>Sand100</td>
<td>100.26</td>
</tr>
<tr>
<td>datum3-GW3</td>
<td>77.53</td>
<td>sand150old</td>
<td>100.37</td>
</tr>
<tr>
<td>datum4-GW7</td>
<td>76.88</td>
<td>sand150new</td>
<td>100.29</td>
</tr>
<tr>
<td>Skaftafellsjökull foreland</td>
<td>76.64</td>
<td>clay50</td>
<td>100.31</td>
</tr>
<tr>
<td>GW10</td>
<td></td>
<td>clay100</td>
<td>100.45</td>
</tr>
<tr>
<td>GW11</td>
<td>101.27</td>
<td>clay150</td>
<td>100.26</td>
</tr>
<tr>
<td>P10</td>
<td>100.70</td>
<td>river</td>
<td>99.18</td>
</tr>
<tr>
<td>P12</td>
<td>101.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW12</td>
<td>101.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW9</td>
<td>100.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW5</td>
<td>100.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>100.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>100.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100.48</td>
</tr>
</tbody>
</table>

Appendix 1. List of piezometers in western Skeiðarársandur and the Skaftafellsjökull foreland.
Grain size distribution N. Oasis

<table>
<thead>
<tr>
<th>%< (mm)</th>
<th>dead bird lake</th>
<th>dry lake nr. Lake lupin</th>
<th>L. Lupin</th>
<th>Muddy lake (N Oasis)</th>
<th>Nort. Outlet Lake</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.07</td>
<td>0.03</td>
<td>0.04</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>0.00</td>
<td>1.42</td>
<td>0.64</td>
<td>0.96</td>
<td>0.42</td>
<td>0.91</td>
</tr>
<tr>
<td>0.00</td>
<td>4.50</td>
<td>2.16</td>
<td>3.23</td>
<td>1.37</td>
<td>3.03</td>
</tr>
<tr>
<td>0.00</td>
<td>9.00</td>
<td>4.71</td>
<td>7.10</td>
<td>2.88</td>
<td>6.46</td>
</tr>
<tr>
<td>0.00</td>
<td>14.90</td>
<td>8.45</td>
<td>13.10</td>
<td>5.01</td>
<td>11.50</td>
</tr>
<tr>
<td>0.00</td>
<td>32.83</td>
<td>17.33</td>
<td>30.40</td>
<td>10.43</td>
<td>25.50</td>
</tr>
<tr>
<td>0.06</td>
<td>99.99</td>
<td>87.77</td>
<td>95.30</td>
<td>55.97</td>
<td>92.60</td>
</tr>
<tr>
<td>0.13</td>
<td>100.00</td>
<td>94.13</td>
<td>98.57</td>
<td>73.23</td>
<td>95.83</td>
</tr>
<tr>
<td>0.25</td>
<td>100.00</td>
<td>97.90</td>
<td>100.00</td>
<td>91.37</td>
<td>99.92</td>
</tr>
<tr>
<td>0.50</td>
<td>100.00</td>
<td>99.40</td>
<td>100.00</td>
<td>98.97</td>
<td>100.00</td>
</tr>
<tr>
<td>1.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>2.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Grain size distribution S. Oasis

<table>
<thead>
<tr>
<th>%< (mm)</th>
<th>SKF3 (Island Lake)</th>
<th>SKF1 (head GWFR)</th>
<th>Swan Lake stage board</th>
<th>Heart Lake</th>
<th>Thin Lake</th>
<th>Island Lake</th>
<th>GW8</th>
<th>L8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
<td>0.38</td>
<td>0.38</td>
<td>0.38</td>
<td>0.38</td>
<td>0.38</td>
<td>0.38</td>
<td>0.23</td>
<td>0.06</td>
</tr>
<tr>
<td>0.00</td>
<td>1.26</td>
<td>1.26</td>
<td>1.26</td>
<td>1.26</td>
<td>1.26</td>
<td>1.26</td>
<td>0.76</td>
<td>0.21</td>
</tr>
<tr>
<td>0.00</td>
<td>2.60</td>
<td>2.60</td>
<td>2.60</td>
<td>2.60</td>
<td>2.60</td>
<td>2.60</td>
<td>1.55</td>
<td>0.44</td>
</tr>
<tr>
<td>0.00</td>
<td>4.33</td>
<td>4.33</td>
<td>4.33</td>
<td>4.33</td>
<td>4.33</td>
<td>4.33</td>
<td>2.57</td>
<td>0.74</td>
</tr>
<tr>
<td>0.00</td>
<td>8.01</td>
<td>8.01</td>
<td>8.01</td>
<td>8.01</td>
<td>8.01</td>
<td>8.01</td>
<td>4.60</td>
<td>1.40</td>
</tr>
<tr>
<td>0.06</td>
<td>7.60</td>
<td>8.95</td>
<td>70.10</td>
<td>10.00</td>
<td>7.20</td>
<td>10.20</td>
<td>55.43</td>
<td>12.03</td>
</tr>
<tr>
<td>0.13</td>
<td>10.77</td>
<td>17.30</td>
<td>79.67</td>
<td>16.60</td>
<td>14.89</td>
<td>20.58</td>
<td>81.87</td>
<td>20.83</td>
</tr>
<tr>
<td>0.25</td>
<td>21.69</td>
<td>38.37</td>
<td>85.63</td>
<td>35.20</td>
<td>29.29</td>
<td>35.35</td>
<td>97.33</td>
<td>37.77</td>
</tr>
<tr>
<td>0.50</td>
<td>50.66</td>
<td>65.21</td>
<td>90.73</td>
<td>63.60</td>
<td>52.17</td>
<td>59.70</td>
<td>99.73</td>
<td>53.50</td>
</tr>
<tr>
<td>1.00</td>
<td>77.64</td>
<td>82.31</td>
<td>97.13</td>
<td>82.80</td>
<td>74.85</td>
<td>82.46</td>
<td>99.97</td>
<td>74.87</td>
</tr>
<tr>
<td>2.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.06</td>
<td>99.62</td>
<td>97.73</td>
<td>98.65</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Grain size distribution Instrumented Lake

<table>
<thead>
<tr>
<th>%< (mm)</th>
<th>claynest_100</th>
<th>clay_nest_150</th>
<th>clay_nest</th>
<th>CN_10 cm</th>
<th>L4</th>
<th>instrumented_lake</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>0.00</td>
<td>0.47</td>
<td>0.47</td>
<td>0.43</td>
<td>0.00</td>
<td>0.00</td>
<td>0.51</td>
</tr>
<tr>
<td>0.00</td>
<td>1.53</td>
<td>1.55</td>
<td>1.41</td>
<td>0.00</td>
<td>0.00</td>
<td>1.65</td>
</tr>
<tr>
<td>0.00</td>
<td>3.14</td>
<td>3.24</td>
<td>2.92</td>
<td>0.27</td>
<td>0.25</td>
<td>3.39</td>
</tr>
<tr>
<td>0.00</td>
<td>5.22</td>
<td>5.41</td>
<td>4.87</td>
<td>2.60</td>
<td>2.41</td>
<td>5.54</td>
</tr>
</tbody>
</table>
Appendices

<table>
<thead>
<tr>
<th>%< (mm)</th>
<th>S.N. 100</th>
<th>S.N. 50</th>
<th>S.N. 150</th>
<th>SED2</th>
<th>SED3</th>
<th>SED4</th>
<th>SED5</th>
<th>SED6</th>
<th>SED7</th>
<th>SED8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>9.69</td>
<td>9.78</td>
<td>8.69</td>
<td>5.47</td>
<td>5.23</td>
<td>9.67</td>
<td>0.06</td>
<td>87.30</td>
<td>89.87</td>
<td>9.78</td>
</tr>
<tr>
<td>0.06</td>
<td>87.30</td>
<td>89.87</td>
<td>87.73</td>
<td>92.90</td>
<td>92.70</td>
<td>93.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.13</td>
<td>94.67</td>
<td>96.70</td>
<td>96.97</td>
<td>98.90</td>
<td>100.00</td>
<td>98.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>97.50</td>
<td>99.53</td>
<td>99.99</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>98.60</td>
<td>99.90</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grain size distribution outwash

<table>
<thead>
<tr>
<th>%< (mm)</th>
<th>S.N. 100</th>
<th>S.N. 50</th>
<th>S.N. 150</th>
<th>SED2</th>
<th>SED3</th>
<th>SED4</th>
<th>SED5</th>
<th>SED6</th>
<th>SED7</th>
<th>SED8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>0.06</td>
<td>2.3</td>
<td>3.3</td>
<td>1.5</td>
<td>3.6</td>
<td>6.4</td>
<td>2.0</td>
<td>2.8</td>
<td>24.0</td>
<td>9.8</td>
<td>5.8</td>
</tr>
<tr>
<td>0.13</td>
<td>4.7</td>
<td>5.3</td>
<td>2.4</td>
<td>8.8</td>
<td>7.2</td>
<td>2.0</td>
<td>4.4</td>
<td>33.0</td>
<td>13.6</td>
<td>8.0</td>
</tr>
<tr>
<td>0.25</td>
<td>10.6</td>
<td>7.9</td>
<td>7.2</td>
<td>25.2</td>
<td>11.2</td>
<td>4.4</td>
<td>9.9</td>
<td>42.0</td>
<td>20.4</td>
<td>14.1</td>
</tr>
<tr>
<td>0.50</td>
<td>21.4</td>
<td>13.8</td>
<td>19.2</td>
<td>57.4</td>
<td>24.1</td>
<td>17.1</td>
<td>27.3</td>
<td>55.0</td>
<td>33.6</td>
<td>30.3</td>
</tr>
<tr>
<td>1.00</td>
<td>57.9</td>
<td>34.8</td>
<td>47.6</td>
<td>82.4</td>
<td>49.5</td>
<td>44.4</td>
<td>57.0</td>
<td>73.0</td>
<td>64.2</td>
<td>60.4</td>
</tr>
<tr>
<td>2.00</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>98.3</td>
<td>96.1</td>
<td>96.3</td>
<td>99.0</td>
<td>96.0</td>
<td>99.0</td>
<td>99.6</td>
</tr>
</tbody>
</table>

Appendix 2. Results of PSA for the different hydrological environments.

<table>
<thead>
<tr>
<th>Environment</th>
<th>Sizing Folk, 1986</th>
<th>Sorting Folk, 1986</th>
</tr>
</thead>
<tbody>
<tr>
<td>claynest_100</td>
<td>0.034</td>
<td>V.W</td>
</tr>
<tr>
<td>clay_nest_150</td>
<td>0.028</td>
<td>V.W</td>
</tr>
<tr>
<td>clay_nest_50</td>
<td>0.029</td>
<td>V.W</td>
</tr>
<tr>
<td>CN (VTP1 location)</td>
<td>0.022</td>
<td>V.W</td>
</tr>
<tr>
<td>L4 (VTP 3)</td>
<td>0.022</td>
<td>V.W</td>
</tr>
<tr>
<td>dead bird lake_3</td>
<td>0.011</td>
<td>V.W</td>
</tr>
<tr>
<td>dry lake nr. Lake lupin_1</td>
<td>0.035</td>
<td>V.W</td>
</tr>
<tr>
<td>GW8_1</td>
<td>0.063</td>
<td>V.W</td>
</tr>
<tr>
<td>instrumented_lake_1</td>
<td>0.021</td>
<td>V.W</td>
</tr>
<tr>
<td>L8_1</td>
<td>0.538</td>
<td>M.W</td>
</tr>
<tr>
<td>lake_lupin</td>
<td>0.023</td>
<td>V.W</td>
</tr>
<tr>
<td>muddy_lake_n_oasis_1</td>
<td>0.106</td>
<td>V.W</td>
</tr>
<tr>
<td>n_outlet_lake_3</td>
<td>0.028</td>
<td>V.W</td>
</tr>
<tr>
<td>sand_nest_100</td>
<td>0.541</td>
<td>M.W</td>
</tr>
<tr>
<td>sand_nest_50_1</td>
<td>0.591</td>
<td>M.W</td>
</tr>
<tr>
<td>sand_nest_150</td>
<td>0.596</td>
<td>M.W</td>
</tr>
<tr>
<td>swan_lake_sb_1</td>
<td>0.145</td>
<td>M.W</td>
</tr>
</tbody>
</table>
Appendix 3. Sorting coefficient and description

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart Lake</td>
<td>0.509</td>
<td>M.W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Island Lake</td>
<td>0.516</td>
<td>M.W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SED2</td>
<td>0.495</td>
<td></td>
<td>well sorted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SED 3</td>
<td>0.607</td>
<td>M.W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SED4</td>
<td>0.582</td>
<td>M.W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SED5</td>
<td>0.618</td>
<td>M.W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SED6</td>
<td>0.655</td>
<td>M.W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SED7</td>
<td>0.617</td>
<td>M.W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SED8</td>
<td>0.606</td>
<td>M.W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skf1</td>
<td>0.507</td>
<td>M.W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SkF3</td>
<td>0.523</td>
<td>M.W</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hydraulic conductivity (m/day)

<table>
<thead>
<tr>
<th></th>
<th>Hazen</th>
<th>Hazen, extremes (C=1)</th>
<th>Hazen, C=1300</th>
<th>Puckett</th>
<th>Alyamani & Sen</th>
<th>porosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Oasis (8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Island Lake</td>
<td>22.5</td>
<td>0.0225</td>
<td>29.25</td>
<td>190.4966</td>
<td>0.313117</td>
<td></td>
</tr>
<tr>
<td>Swan Lake SB</td>
<td>0.006655</td>
<td>1.9E-05</td>
<td>0.02472</td>
<td>0.773876</td>
<td>0.14789</td>
<td>0.305277</td>
</tr>
<tr>
<td>Heart Lake</td>
<td>3.969</td>
<td>0.003969</td>
<td>5.1597</td>
<td>216.1911</td>
<td></td>
<td>0.322379</td>
</tr>
<tr>
<td>Thin Lake</td>
<td>3.969</td>
<td>0.003969</td>
<td>5.1597</td>
<td>216.1911</td>
<td></td>
<td>0.322379</td>
</tr>
<tr>
<td>GW8</td>
<td>0.100601</td>
<td>0.000101</td>
<td>0.130781</td>
<td>8.552657</td>
<td>0.338649</td>
<td></td>
</tr>
<tr>
<td>L8</td>
<td>2.383392</td>
<td>0.002383</td>
<td>3.09841</td>
<td>482.8388</td>
<td>0.280823</td>
<td></td>
</tr>
<tr>
<td>SKF1 (head GWFR)</td>
<td>3.969</td>
<td>0.003969</td>
<td>5.1597</td>
<td>123.1631</td>
<td>0.322379</td>
<td></td>
</tr>
<tr>
<td>SKF3 (Island Lake)</td>
<td>7.225</td>
<td>0.007225</td>
<td>9.3925</td>
<td>334.4933</td>
<td>0.314267</td>
<td></td>
</tr>
<tr>
<td>IL (6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>clay nest 50</td>
<td>0.00536</td>
<td>1.53E-05</td>
<td>0.019908</td>
<td>0.677513</td>
<td>1.209398</td>
<td>0.298796</td>
</tr>
<tr>
<td>clay 100</td>
<td>0.003536</td>
<td>1.01E-05</td>
<td>0.013135</td>
<td>0.555723</td>
<td>1.206488</td>
<td>0.296433</td>
</tr>
<tr>
<td>clay 150</td>
<td>0.003422</td>
<td>9.78E-06</td>
<td>0.012712</td>
<td>0.545573</td>
<td>1.205006</td>
<td>0.295208</td>
</tr>
<tr>
<td>VTP1 (CN)</td>
<td>0.024275</td>
<td>0.032</td>
<td>0.773876</td>
<td>0.333823</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTP3 (L4)</td>
<td>0.026235</td>
<td>0.034</td>
<td>1.34</td>
<td>0.334162</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instr. Lake (clay end)</td>
<td>0.003615</td>
<td>1.03E-05</td>
<td>0.013426</td>
<td>0.55829</td>
<td>5.233988</td>
<td>0.30529</td>
</tr>
<tr>
<td>Outwash (11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SED2</td>
<td>61.00625</td>
<td>0.061006</td>
<td>79.30813</td>
<td>1148.722</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SED3</td>
<td>40</td>
<td>0.04</td>
<td>52</td>
<td>272.8421</td>
<td>0.383774</td>
<td></td>
</tr>
<tr>
<td>SED4</td>
<td>140.625</td>
<td>0.140625</td>
<td>182.8125</td>
<td>1352.52</td>
<td>0.33837</td>
<td></td>
</tr>
<tr>
<td>SED5</td>
<td>62.5</td>
<td>0.0625</td>
<td>81.25</td>
<td>1936.903</td>
<td>0.388663</td>
<td></td>
</tr>
<tr>
<td>SED6</td>
<td>3.969</td>
<td>0.003969</td>
<td>5.1597</td>
<td>191.3186</td>
<td>0.258299</td>
<td></td>
</tr>
<tr>
<td>SED7</td>
<td>15.625</td>
<td>0.015625</td>
<td>20.3125</td>
<td>765.1247</td>
<td>0.272804</td>
<td></td>
</tr>
</tbody>
</table>
Appendices

<table>
<thead>
<tr>
<th></th>
<th>Concentration (µeq/l)</th>
<th>Temp (°C)</th>
<th>EC</th>
<th>Cl⁻</th>
<th>SO₄²⁻</th>
<th>Ca²⁺ + Mg²⁺</th>
<th>K⁺ + Na⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>SED8</td>
<td>15.625</td>
<td>0.015625</td>
<td>20.3125</td>
<td>764.5264</td>
<td>0.312433</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTP2 (river)</td>
<td>0.236237</td>
<td>0.00024</td>
<td>0.31</td>
<td>2.66</td>
<td>30.8341</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand Nest 50</td>
<td>123.5757</td>
<td>0.123576</td>
<td>160.6484</td>
<td>3.424074</td>
<td>1105.936</td>
<td>0.376413</td>
<td></td>
</tr>
<tr>
<td>Sand Nest 100</td>
<td>56.43792</td>
<td>0.056438</td>
<td>73.3693</td>
<td>3.403847</td>
<td>866.2724</td>
<td>0.36474</td>
<td></td>
</tr>
<tr>
<td>Sand Nest 150</td>
<td>97.71876</td>
<td>0.097719</td>
<td>127.0344</td>
<td>3.494672</td>
<td>775.4718</td>
<td>0.379709</td>
<td></td>
</tr>
</tbody>
</table>

Appendix 4. Results of K using different PSA equations

<table>
<thead>
<tr>
<th>Location</th>
<th>Date</th>
<th>EC</th>
<th>Cl⁻</th>
<th>SO₄²⁻</th>
<th>Ca²⁺ + Mg²⁺</th>
<th>K⁺ + Na⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL011</td>
<td>08/07</td>
<td>8.7</td>
<td>115</td>
<td>136</td>
<td>1049</td>
<td>376</td>
</tr>
<tr>
<td>AL158</td>
<td>29/08</td>
<td>GW8</td>
<td>10.1</td>
<td>153</td>
<td>119</td>
<td>213</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>AL018</td>
<td>10/07</td>
<td>L1 piez</td>
<td>9.9</td>
<td>153</td>
<td>146</td>
<td>168</td>
</tr>
<tr>
<td>AL091</td>
<td>25/07</td>
<td>L1 piez</td>
<td>10.4</td>
<td>159</td>
<td>144</td>
<td>185</td>
</tr>
<tr>
<td>AL142</td>
<td>25/08</td>
<td>L1 piez</td>
<td>9.9</td>
<td>158</td>
<td>126</td>
<td>223</td>
</tr>
<tr>
<td>AL020</td>
<td>10/07</td>
<td>L2</td>
<td>10.3</td>
<td>182</td>
<td>141</td>
<td>161</td>
</tr>
<tr>
<td>AL143</td>
<td>25/08</td>
<td>L2</td>
<td>9.2</td>
<td>181</td>
<td>123</td>
<td>134</td>
</tr>
<tr>
<td>AL021</td>
<td>10/07</td>
<td>L3</td>
<td>8.2</td>
<td>114</td>
<td>136</td>
<td>135</td>
</tr>
<tr>
<td>AL093</td>
<td>25/07</td>
<td>L3</td>
<td>8.4</td>
<td>117</td>
<td>135</td>
<td>126</td>
</tr>
<tr>
<td>AL144</td>
<td>25/08</td>
<td>L3</td>
<td>9.2</td>
<td>124</td>
<td>120</td>
<td>142</td>
</tr>
<tr>
<td>AL022</td>
<td>11/07</td>
<td>L8</td>
<td>12.1</td>
<td>130</td>
<td>141</td>
<td>126</td>
</tr>
<tr>
<td>AL092</td>
<td>25/07</td>
<td>L8</td>
<td>9.2</td>
<td>150</td>
<td>137</td>
<td>145</td>
</tr>
<tr>
<td>AL029</td>
<td>12/07</td>
<td>L4 piez</td>
<td>12.5</td>
<td>120</td>
<td>135</td>
<td>122</td>
</tr>
<tr>
<td>AL080</td>
<td>24/07</td>
<td>L4 piez</td>
<td>12.3</td>
<td>118</td>
<td>133</td>
<td>134</td>
</tr>
<tr>
<td>AL145</td>
<td>25/08</td>
<td>L4 piez</td>
<td>8</td>
<td>126</td>
<td>121</td>
<td>151</td>
</tr>
<tr>
<td>AL024</td>
<td>11/07</td>
<td>L5</td>
<td>13.9</td>
<td>126</td>
<td>138</td>
<td>133</td>
</tr>
<tr>
<td>AL081</td>
<td>24/07</td>
<td>L5 piez</td>
<td>11</td>
<td>127</td>
<td>132</td>
<td>136</td>
</tr>
<tr>
<td>AL146</td>
<td>25/08</td>
<td>L5</td>
<td>9.5</td>
<td>128</td>
<td>116</td>
<td>146</td>
</tr>
<tr>
<td>AL015</td>
<td>10/07</td>
<td>L6 piez</td>
<td>12.4</td>
<td>115</td>
<td>140</td>
<td>125</td>
</tr>
<tr>
<td>AL094</td>
<td>25/07</td>
<td>L6 piez</td>
<td>6.5</td>
<td>118</td>
<td>134</td>
<td>140</td>
</tr>
<tr>
<td>AL147</td>
<td>25/08</td>
<td>L6 piez</td>
<td>8.3</td>
<td>105</td>
<td>94</td>
<td>110</td>
</tr>
<tr>
<td>AL019</td>
<td>10/07</td>
<td>L7</td>
<td>13.1</td>
<td>139</td>
<td>155</td>
<td>129</td>
</tr>
<tr>
<td>AL082</td>
<td>24/07</td>
<td>L7 piez</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL025</td>
<td>11/07</td>
<td>sand50</td>
<td>14.1</td>
<td>193</td>
<td>143</td>
<td>181</td>
</tr>
<tr>
<td>AL141</td>
<td>25/08</td>
<td>sand nest50</td>
<td>9.8</td>
<td>135</td>
<td>111</td>
<td>125</td>
</tr>
<tr>
<td>AL014</td>
<td>10/07</td>
<td>clay150 pipe</td>
<td>11.5</td>
<td>113</td>
<td>134</td>
<td>120</td>
</tr>
<tr>
<td>AL017</td>
<td>10/07</td>
<td>clay100</td>
<td>14.2</td>
<td>114</td>
<td>136</td>
<td>118</td>
</tr>
<tr>
<td>AL148</td>
<td>25/08</td>
<td>clay nest150</td>
<td>7.3</td>
<td>123</td>
<td>118</td>
<td>146</td>
</tr>
<tr>
<td>AL111</td>
<td>28/07</td>
<td>spring at instr. Lake</td>
<td>4.7</td>
<td>118</td>
<td>134</td>
<td>146</td>
</tr>
<tr>
<td>AL112</td>
<td>28/07</td>
<td>spring at instr. Lake</td>
<td>5.3</td>
<td>119</td>
<td>135</td>
<td>137</td>
</tr>
<tr>
<td>AL003</td>
<td>08/07</td>
<td>T1</td>
<td>10.5</td>
<td>155</td>
<td>135</td>
<td>375</td>
</tr>
<tr>
<td>AL088</td>
<td>24/07</td>
<td>T1</td>
<td>8.9</td>
<td>155</td>
<td>136</td>
<td>258</td>
</tr>
<tr>
<td>AL153</td>
<td>28/08</td>
<td>T1</td>
<td>10.7</td>
<td>181</td>
<td>148</td>
<td>415</td>
</tr>
<tr>
<td>AL004</td>
<td>08/07</td>
<td>T2</td>
<td>11.6</td>
<td>132</td>
<td>137</td>
<td>141</td>
</tr>
<tr>
<td>AL089</td>
<td>24/07</td>
<td>T2</td>
<td>8.8</td>
<td>156</td>
<td>153</td>
<td>219</td>
</tr>
<tr>
<td>AL152</td>
<td>28/08</td>
<td>T2</td>
<td>10.9</td>
<td>179</td>
<td>136</td>
<td>318</td>
</tr>
<tr>
<td>AL005</td>
<td>08/07</td>
<td>T3</td>
<td>9.1</td>
<td>150</td>
<td>138</td>
<td>164</td>
</tr>
<tr>
<td>AL090</td>
<td>24/07</td>
<td>T3</td>
<td>8.5</td>
<td>161</td>
<td>137</td>
<td>158</td>
</tr>
<tr>
<td>AL151</td>
<td>28/08</td>
<td>T3</td>
<td>10.1</td>
<td>153</td>
<td>137</td>
<td>201</td>
</tr>
<tr>
<td>AL001</td>
<td>08/07</td>
<td>GW10</td>
<td>9.9</td>
<td>123</td>
<td>136</td>
<td>133</td>
</tr>
<tr>
<td>AL087</td>
<td>24/07</td>
<td>GW10</td>
<td>9</td>
<td>143</td>
<td>141</td>
<td>217</td>
</tr>
<tr>
<td>AL155</td>
<td>29/08</td>
<td>GW10</td>
<td>12.6</td>
<td>149</td>
<td>145</td>
<td>277</td>
</tr>
<tr>
<td>AL086</td>
<td>24/07</td>
<td>GW11</td>
<td>7.1</td>
<td>126</td>
<td>134</td>
<td>164</td>
</tr>
<tr>
<td>Code</td>
<td>Date</td>
<td>Location</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>--------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>AL150</td>
<td>28/08</td>
<td>GW11</td>
<td>7.7</td>
<td>132</td>
<td>127</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>09/07</td>
<td>GW12</td>
<td>9.4</td>
<td>121</td>
<td>135</td>
<td>140</td>
</tr>
<tr>
<td>AL085</td>
<td>24/07</td>
<td>GW12</td>
<td>7.9</td>
<td>124</td>
<td>132</td>
<td>154</td>
</tr>
<tr>
<td>AL154</td>
<td>28/08</td>
<td>GW12</td>
<td>9.4</td>
<td>135</td>
<td>130</td>
<td>187</td>
</tr>
<tr>
<td>AL095</td>
<td>26/07</td>
<td>P12</td>
<td>9.1</td>
<td>144</td>
<td>137</td>
<td>177</td>
</tr>
<tr>
<td>AL149</td>
<td>25/08</td>
<td>P12</td>
<td>8.3</td>
<td>152</td>
<td>121</td>
<td>189</td>
</tr>
<tr>
<td>AL026</td>
<td>11/07</td>
<td>P10</td>
<td>12.7</td>
<td>133</td>
<td>81</td>
<td>131</td>
</tr>
<tr>
<td>AL007</td>
<td>08/07</td>
<td>GW5</td>
<td>7.7</td>
<td>92</td>
<td>69</td>
<td>72</td>
</tr>
<tr>
<td>AL084</td>
<td>24/07</td>
<td>GW5</td>
<td>9.4</td>
<td>138</td>
<td>69</td>
<td>145</td>
</tr>
<tr>
<td>AL157</td>
<td>29/08</td>
<td>GW5</td>
<td>11.5</td>
<td>209</td>
<td>123</td>
<td>405</td>
</tr>
<tr>
<td>AL008</td>
<td>08/07</td>
<td>GW9</td>
<td>4.7</td>
<td>49</td>
<td>50</td>
<td>23</td>
</tr>
<tr>
<td>AL083</td>
<td>24/07</td>
<td>GW9</td>
<td>5.1</td>
<td>55</td>
<td>49</td>
<td>30</td>
</tr>
<tr>
<td>AL156</td>
<td>29/08</td>
<td>GW9</td>
<td>10.3</td>
<td>91</td>
<td>63</td>
<td>88</td>
</tr>
<tr>
<td>AL006</td>
<td>08/07</td>
<td>instr. lake, nr. Sand nest</td>
<td>17.4</td>
<td>115</td>
<td>145</td>
<td>66</td>
</tr>
<tr>
<td>AL016</td>
<td>10/07</td>
<td>instr. lake nr. Clay nest</td>
<td>114</td>
<td>145</td>
<td>68</td>
<td>816</td>
</tr>
<tr>
<td>AL052</td>
<td>21/07</td>
<td>instr. Lake, nr. T3</td>
<td>14.6</td>
<td>114</td>
<td>62</td>
<td>6</td>
</tr>
<tr>
<td>AL053</td>
<td></td>
<td>N. side instr. Lake</td>
<td>14.5</td>
<td>114</td>
<td>58</td>
<td>5</td>
</tr>
<tr>
<td>AL054</td>
<td></td>
<td>inst. Lake, nr. Clay nest</td>
<td>14.8</td>
<td>111</td>
<td>61</td>
<td>6</td>
</tr>
<tr>
<td>AL055</td>
<td></td>
<td>inst. Lake, nr. L4</td>
<td>14.4</td>
<td>114</td>
<td>62</td>
<td>6</td>
</tr>
<tr>
<td>AL108</td>
<td>28/07</td>
<td>Instrumented lake</td>
<td>14.4</td>
<td>112</td>
<td>146</td>
<td>81</td>
</tr>
<tr>
<td>AL109</td>
<td></td>
<td>Instrumented lake</td>
<td>15.2</td>
<td>112</td>
<td>146</td>
<td>82</td>
</tr>
<tr>
<td>AL110</td>
<td></td>
<td>Instrumented lake</td>
<td>14.5</td>
<td>111</td>
<td>146</td>
<td>82</td>
</tr>
<tr>
<td>AL113</td>
<td></td>
<td>Instrumented lake</td>
<td>16.1</td>
<td>112</td>
<td>149</td>
<td>85</td>
</tr>
<tr>
<td>AL164</td>
<td>29/08</td>
<td>instrumented lake, by staging board</td>
<td>7.9</td>
<td>80</td>
<td>61</td>
<td>53</td>
</tr>
<tr>
<td>AL165</td>
<td></td>
<td>instrumented lake, nr. L5, L6</td>
<td>11.3</td>
<td>80</td>
<td>64</td>
<td>52</td>
</tr>
<tr>
<td>AL030</td>
<td>12/07</td>
<td>Swan Lake w. shore</td>
<td>110</td>
<td>152</td>
<td>45</td>
<td>786</td>
</tr>
<tr>
<td>AL037</td>
<td>13/07</td>
<td>Swan Lake, E. shore</td>
<td>18</td>
<td>110</td>
<td>154</td>
<td>61</td>
</tr>
<tr>
<td>AL057</td>
<td>21/07</td>
<td>Swan lake, nw shore</td>
<td>14.5</td>
<td>106</td>
<td>151</td>
<td>46</td>
</tr>
<tr>
<td>AL058</td>
<td>21/07</td>
<td>swan lake, s. shore</td>
<td>14.9</td>
<td>108</td>
<td>152</td>
<td>42</td>
</tr>
<tr>
<td>AL059</td>
<td>21/07</td>
<td>swan lake, centre</td>
<td>13.9</td>
<td>107</td>
<td>153</td>
<td>46</td>
</tr>
<tr>
<td>AL060</td>
<td>21/07</td>
<td>swan lake, N. shore</td>
<td>14.4</td>
<td>105</td>
<td>150</td>
<td>47</td>
</tr>
<tr>
<td>AL114</td>
<td>28/07</td>
<td>Swan Lake</td>
<td>17.6</td>
<td>105</td>
<td>156</td>
<td>51</td>
</tr>
<tr>
<td>AL115</td>
<td>28/07</td>
<td>Swan Lake</td>
<td>17.8</td>
<td>107</td>
<td>155</td>
<td>46</td>
</tr>
<tr>
<td>AL116</td>
<td>28/07</td>
<td>Swan Lake</td>
<td>17.6</td>
<td>109</td>
<td>126</td>
<td>40</td>
</tr>
<tr>
<td>AL117</td>
<td>28/07</td>
<td>Swan Lake</td>
<td>16.3</td>
<td>104</td>
<td>154</td>
<td>52</td>
</tr>
<tr>
<td>AL166</td>
<td>29/08</td>
<td>Swan Lake, nr. Stage board</td>
<td>9.1</td>
<td>68</td>
<td>62</td>
<td>38</td>
</tr>
<tr>
<td>AL167</td>
<td>29/08</td>
<td>Swan Lake, NE corner</td>
<td>9.1</td>
<td>67</td>
<td>61</td>
<td>36</td>
</tr>
<tr>
<td>AL033</td>
<td>12/07</td>
<td>Island Lake, S. section</td>
<td>18.9</td>
<td>130</td>
<td>152</td>
<td>42</td>
</tr>
<tr>
<td>AL034</td>
<td>12/07</td>
<td>Island Lake, N. section</td>
<td>20.7</td>
<td>136</td>
<td>161</td>
<td>60</td>
</tr>
<tr>
<td>AL063</td>
<td>23/07</td>
<td>Island lake, NE shore</td>
<td>13.4</td>
<td>118</td>
<td>144</td>
<td>74</td>
</tr>
<tr>
<td>AL064</td>
<td>23/07</td>
<td>Island Lake, N. shore</td>
<td>13.8</td>
<td>119</td>
<td>142</td>
<td>59</td>
</tr>
<tr>
<td>AL065</td>
<td>23/07</td>
<td>Island Lake, S. section</td>
<td>14.9</td>
<td>121</td>
<td>146</td>
<td>36</td>
</tr>
<tr>
<td>AL066</td>
<td>23/07</td>
<td>Island Lake, W. shore</td>
<td>14.8</td>
<td>118</td>
<td>144</td>
<td>43</td>
</tr>
<tr>
<td>AL135</td>
<td>30/07</td>
<td>Island Lake</td>
<td>14.3</td>
<td>127</td>
<td>145</td>
<td>60</td>
</tr>
<tr>
<td>AL136</td>
<td>30/07</td>
<td>Island Lake</td>
<td>14.2</td>
<td>130</td>
<td>149</td>
<td>44</td>
</tr>
<tr>
<td>AL137</td>
<td>30/07</td>
<td>Island Lake</td>
<td>15.1</td>
<td>126</td>
<td>149</td>
<td>49</td>
</tr>
<tr>
<td>AL170</td>
<td>31/08</td>
<td>Island Lake, opposite end to stage board</td>
<td>9.5</td>
<td>126</td>
<td>150</td>
<td>78</td>
</tr>
<tr>
<td>AL171</td>
<td>31/08</td>
<td>Island lake, s. end, nr. Stage board, but deep water</td>
<td>9.9</td>
<td>124</td>
<td>150</td>
<td>76</td>
</tr>
<tr>
<td>AL035</td>
<td>12/07</td>
<td>Thin Lake E. side</td>
<td>15</td>
<td>118</td>
<td>136</td>
<td>106</td>
</tr>
<tr>
<td>AL036</td>
<td>12/07</td>
<td>Thin Lake W. side</td>
<td>23.2</td>
<td>125</td>
<td>138</td>
<td>122</td>
</tr>
<tr>
<td>AL061</td>
<td>21/07</td>
<td>Thin Lake, E. shore</td>
<td>11.4</td>
<td>113</td>
<td>132</td>
<td>104</td>
</tr>
<tr>
<td>AL062</td>
<td>21/07</td>
<td>Thin Lake, W. shore</td>
<td>13.6</td>
<td>118</td>
<td>130</td>
<td>110</td>
</tr>
<tr>
<td>AL132</td>
<td>30/07</td>
<td>Thin Lake</td>
<td>11.5</td>
<td>115</td>
<td>133</td>
<td>111</td>
</tr>
<tr>
<td>AL133</td>
<td>30/07</td>
<td>Thin Lake</td>
<td>15</td>
<td>120</td>
<td>134</td>
<td>113</td>
</tr>
<tr>
<td>AL134</td>
<td>30/07</td>
<td>Thin Lake</td>
<td>12.5</td>
<td>116</td>
<td>134</td>
<td>111</td>
</tr>
<tr>
<td>AL168</td>
<td>31/08</td>
<td>Thin Lake, nr. Stage board</td>
<td>8.9</td>
<td>112</td>
<td>120</td>
<td>100</td>
</tr>
<tr>
<td>AL169</td>
<td>31/08</td>
<td>Thin Lake, shallow end</td>
<td>10.3</td>
<td>107</td>
<td>119</td>
<td>102</td>
</tr>
<tr>
<td>AL067</td>
<td>23/07</td>
<td>Heart Lake, W. shore</td>
<td>15</td>
<td>142</td>
<td>166</td>
<td>44</td>
</tr>
<tr>
<td>AL068</td>
<td>23/07</td>
<td>Heart Lake, s. shore</td>
<td>14</td>
<td>142</td>
<td>166</td>
<td>46</td>
</tr>
<tr>
<td>AL069</td>
<td>23/07</td>
<td>Heart Lake, N. end</td>
<td>14.1</td>
<td>141</td>
<td>169</td>
<td>43</td>
</tr>
<tr>
<td>AL138</td>
<td>30/07</td>
<td>Heart Lake</td>
<td>15.5</td>
<td>144</td>
<td>170</td>
<td>46</td>
</tr>
<tr>
<td>AL139</td>
<td>30/07</td>
<td>Heart Lake</td>
<td>15.2</td>
<td>144</td>
<td>168</td>
<td>45</td>
</tr>
<tr>
<td>AL172</td>
<td>31/08</td>
<td>Heart Lake (NE corner)</td>
<td>10.1</td>
<td>135</td>
<td>150</td>
<td>58</td>
</tr>
<tr>
<td>AL173</td>
<td>31/08</td>
<td>Heart Lake, southernmost tip</td>
<td>10.4</td>
<td>138</td>
<td>152</td>
<td>57</td>
</tr>
<tr>
<td>AL002</td>
<td>08/07</td>
<td>River Skáftafellsá (at stilling well)</td>
<td>1.7</td>
<td>27</td>
<td>56</td>
<td>18</td>
</tr>
<tr>
<td>AL070</td>
<td>23/07</td>
<td>River Skáftafellsá</td>
<td>1.1</td>
<td>24</td>
<td>36</td>
<td>13</td>
</tr>
<tr>
<td>AL071</td>
<td>23/07</td>
<td>River Skáftafellsá</td>
<td>1</td>
<td>24</td>
<td>37</td>
<td>13</td>
</tr>
<tr>
<td>Code</td>
<td>Date</td>
<td>Location</td>
<td>δ¹⁸O</td>
<td>δD</td>
<td>GMWL</td>
<td>Det. Excess</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>----------</td>
<td>------</td>
<td>----</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>AL072</td>
<td>23/07</td>
<td>river Skaftafellsá</td>
<td>1</td>
<td>24</td>
<td>36</td>
<td>112</td>
</tr>
<tr>
<td>AL073</td>
<td>23/07</td>
<td>River Skaftafellsá</td>
<td>0.8</td>
<td>22</td>
<td>24</td>
<td>13</td>
</tr>
<tr>
<td>AL162</td>
<td>29/08</td>
<td>Skaftafellsá, nr. Staging well</td>
<td>1.2</td>
<td>20</td>
<td>26</td>
<td>15</td>
</tr>
<tr>
<td>AL163</td>
<td>29/08</td>
<td>Skaftafellsá, n. of moraine, nr. GW10</td>
<td>1.2</td>
<td>20</td>
<td>26</td>
<td>16</td>
</tr>
<tr>
<td>AL038</td>
<td>14/07</td>
<td>Dead Bird Lake</td>
<td>14.7</td>
<td>71</td>
<td>60</td>
<td>21</td>
</tr>
<tr>
<td>AL096</td>
<td>27/07</td>
<td>Dead Bird Lake</td>
<td>17.5</td>
<td>66</td>
<td>188</td>
<td>44</td>
</tr>
<tr>
<td>AL097</td>
<td>27/07</td>
<td>Dead Bird Lake</td>
<td>15.4</td>
<td>56</td>
<td>170</td>
<td>41</td>
</tr>
<tr>
<td>AL098</td>
<td>27/07</td>
<td>Dead Bird Lake</td>
<td>14.4</td>
<td>47</td>
<td>151</td>
<td>37</td>
</tr>
<tr>
<td>AL099</td>
<td>27/07</td>
<td>Dead Bird Lake</td>
<td>14.7</td>
<td>47</td>
<td>151</td>
<td>38</td>
</tr>
<tr>
<td>AL039</td>
<td>14/07</td>
<td>Little island lake</td>
<td>16.7</td>
<td>49</td>
<td>169</td>
<td>17</td>
</tr>
<tr>
<td>AL100</td>
<td>27/07</td>
<td>Little island lake</td>
<td>17.7</td>
<td>48</td>
<td>194</td>
<td>28</td>
</tr>
<tr>
<td>AL101</td>
<td>27/07</td>
<td>Little island lake</td>
<td>16.9</td>
<td>48</td>
<td>193</td>
<td>25</td>
</tr>
<tr>
<td>AL042</td>
<td>14/07</td>
<td>Lake Lupin</td>
<td>16.6</td>
<td>46</td>
<td>126</td>
<td>10</td>
</tr>
<tr>
<td>AL105</td>
<td>27/07</td>
<td>Lupin Lake</td>
<td>16.8</td>
<td>55</td>
<td>175</td>
<td>25</td>
</tr>
<tr>
<td>AL106</td>
<td>27/07</td>
<td>Lupin Lake</td>
<td>16.4</td>
<td>50</td>
<td>175</td>
<td>26</td>
</tr>
<tr>
<td>AL107</td>
<td>27/07</td>
<td>Lupin Lake</td>
<td>16.4</td>
<td>47</td>
<td>174</td>
<td>25</td>
</tr>
<tr>
<td>AL040</td>
<td>14/07</td>
<td>Twin Lake</td>
<td>16.4</td>
<td>57</td>
<td>139</td>
<td>12</td>
</tr>
<tr>
<td>AL041</td>
<td>14/07</td>
<td>small lake nr. Twin Lake</td>
<td>81</td>
<td>85</td>
<td>10</td>
<td>487</td>
</tr>
<tr>
<td>AL102</td>
<td>27/07</td>
<td>Twin Lake</td>
<td>15.4</td>
<td>58</td>
<td>149</td>
<td>42</td>
</tr>
<tr>
<td>AL103</td>
<td>27/07</td>
<td>Twin Lake</td>
<td>15.4</td>
<td>58</td>
<td>151</td>
<td>44</td>
</tr>
<tr>
<td>AL104</td>
<td>27/07</td>
<td>Twin Lake</td>
<td>15</td>
<td>58</td>
<td>151</td>
<td>45</td>
</tr>
<tr>
<td>AL159</td>
<td>29/08</td>
<td>head of GWFR</td>
<td>193</td>
<td>2448</td>
<td>4698</td>
<td>821</td>
</tr>
<tr>
<td>AL160</td>
<td>29/08</td>
<td>GWFR, 150 downstream of AL159</td>
<td>144</td>
<td>128</td>
<td>1420</td>
<td>394</td>
</tr>
<tr>
<td>AL161</td>
<td>29/08</td>
<td>GWFR, Towards the river</td>
<td>145</td>
<td>114</td>
<td>1439</td>
<td>372</td>
</tr>
</tbody>
</table>

Appendix 5. Water quality and solute concentrations
Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Isotope Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skaftafellsá</td>
<td>-11.03 -77.67 -78.22 10.56</td>
</tr>
<tr>
<td>groundwater</td>
<td></td>
</tr>
<tr>
<td>SKF T1</td>
<td>-7.42 -53.22 -49.37 6.15</td>
</tr>
<tr>
<td>SKF T2</td>
<td>-7.98 -56.49 -53.84 7.35</td>
</tr>
<tr>
<td>SKF T3</td>
<td>-7.50 -54.45 -49.96 5.52</td>
</tr>
<tr>
<td>SKF GW5</td>
<td>-8.97 -64.54 -61.78 7.24</td>
</tr>
<tr>
<td>SKF GW9</td>
<td>-10.00 -71.13 -69.98 8.85</td>
</tr>
<tr>
<td>SKF GW11</td>
<td>-8.00 -56.76 -53.98 7.21</td>
</tr>
<tr>
<td>SKF GW12</td>
<td>-7.89 -57.11 -53.15 6.04</td>
</tr>
<tr>
<td>SKF P12</td>
<td>-7.83 -56.48 -52.63 6.15</td>
</tr>
<tr>
<td>SKF L1</td>
<td>-7.52 -55.01 -50.17 5.16</td>
</tr>
<tr>
<td>SKF L2</td>
<td>-8.44 -61.70 -57.49 5.80</td>
</tr>
<tr>
<td>SKF L3</td>
<td>-7.80 -55.59 -52.43 6.84</td>
</tr>
<tr>
<td>SKF L4</td>
<td>-7.91 -56.10 -53.27 7.17</td>
</tr>
<tr>
<td>SKF L5</td>
<td>-7.75 -56.94 -52.01 5.07</td>
</tr>
<tr>
<td>SKF sand nest 50</td>
<td>-7.67 -55.05 -51.36 6.31</td>
</tr>
<tr>
<td>SKF sand nest 150</td>
<td>-7.80 -56.78 -52.41 5.63</td>
</tr>
<tr>
<td>GWFR</td>
<td></td>
</tr>
<tr>
<td>SKF Head GW FR</td>
<td>-5.95 -47.97 -37.57 -0.39</td>
</tr>
<tr>
<td>SKF Mid GW FR</td>
<td>-7.76 -55.50 -52.08 6.57</td>
</tr>
<tr>
<td>SKF GW-Creek</td>
<td>-7.67 -55.54 -51.38 5.84</td>
</tr>
<tr>
<td>*SKF GW-Creek (PS)</td>
<td>-7.64 -55.44 -51.13 5.69</td>
</tr>
<tr>
<td>lakes</td>
<td></td>
</tr>
<tr>
<td>SKF island Lake</td>
<td>-6.28 -49.30 -40.28 0.98</td>
</tr>
<tr>
<td>SKF thin lake east</td>
<td>-7.68 -56.90 -51.46 5.36</td>
</tr>
<tr>
<td>SKF thin lake west</td>
<td>-7.65 -56.65 -51.23 4.58</td>
</tr>
<tr>
<td>SKF swan lake, w-shore</td>
<td>-8.47 -63.35 -57.79 4.43</td>
</tr>
<tr>
<td>SKF lake nr., clay nest</td>
<td>-8.64 -63.79 -59.12 5.33</td>
</tr>
<tr>
<td>SKF lake nr., sand nest</td>
<td>-8.59 -64.08 -58.70 4.62</td>
</tr>
</tbody>
</table>

Appendix 6. Stable isotope composition of groundwater and surface water at the Skaftafellsjökull margin.