WASP-92b, WASP-93b and WASP-118b: three new transiting close-in giant planets

Affiliations are listed at the end of the paper

Accepted 2016 August 17. Received 2016 August 16; in original form 2016 July 2

ABSTRACT

We present the discovery of three new transiting giant planets, first detected with the WASP telescopes, and establish their planetary nature with follow up spectroscopy and ground-based photometric light curves. WASP-92 is an F7 star, with a moderately inflated planet orbiting with a period of 2.17 d, which has $R_p = 1.461 \pm 0.077 R_J$ and $M_p = 0.805 \pm 0.068 M_J$. WASP-93b orbits its F4 host star every 2.73 d and has $R_p = 1.597 \pm 0.077 R_J$ and $M_p = 1.47 \pm 0.029 M_J$. WASP-118b also has a hot host star (F6) and is moderately inflated, where $R_p = 1.440 \pm 0.036 R_J$ and $M_p = 0.514 \pm 0.020 M_J$ and the planet has an orbital period of 4.05 d. They are bright targets ($V = 13.18, 10.97$ and 11.07, respectively) ideal for further characterization work, particularly WASP-118b, which is being observed by K2 as part of campaign 8. The WASP-93 system has sufficient angular momentum to be tidally migrating outwards if the system is near spin–orbit alignment, which is divergent from the tidal behaviour of the majority of hot Jupiters discovered.

Key words: techniques: photometric – techniques: radial velocities – planets and satellites: detection – planet–star interactions – planetary systems.

1 INTRODUCTION

The WASP consortium (Pollacco et al. 2006) has been highly successful at identifying and confirming the existence of transiting hot Jupiters (orbital period, $P < 10$ d). Wide angle ground-based surveys are able to find rarer objects with small orbital separations and deep transits found predominantly around stars brighter than $V=13$. This wealth of discoveries of bright stars hosting planets has enabled detailed follow up observations. The planets discovered by these surveys dominate the targets used for planetary atmosphere characterization and further understanding of planet formation mechanisms and migration (see e.g. Ford & Rasio 2006; Matsumura, Peale & Rasio 2010; Sing et al. 2016).

Hot Jupiters are rare objects with an occurrence rate estimated to be ∼1 per cent, depending on the stellar population surveyed (Howard et al. 2012; Wright et al. 2012; Wang et al. 2015). Searches for close-in companions to hot Jupiters via transit timing variations (TTV; Steffen et al. 2012) have been unsuccessful. This lack of close-in planets points towards the theory that these objects form outside the snow line and migrate towards the orbits they are observed in through high eccentricity migration (HEM) (Rasio & Ford 1996; Fabrycky & Tremaine 2007; Mustill, Davies & Johansen 2015).

It was first noted by Winn et al. (2010) and expanded upon by Albrecht et al. (2012) that the distribution of projected hot Jupiter orbital obliquities appeared correlated with the temperature of the

* E-mail: kh97@st-andrews.ac.uk
host star. The two groups of obliquities seen were separated at a stellar effective temperature around 6250 K, with cooler stars more likely to host hot Jupiters with orbits aligned to the stellar rotation axis, and hotter stars with a range of alignments. The range of alignments observed is another indicator that HEM is a strong candidate for the prevailing migration mechanism for hot Jupiters with strong misalignments.

Recent statistical work has, however, shown that not all hot Jupiters can have undergone HEM due to the lack of super-eccentric orbits found (Dawson, Murray-Clay & Johnson 2015). The K2 mission (Howell et al. 2014) allows for the detection of the transits of small companion planets for hot Jupiters. This capability was demonstrated with the discovery of two further planets in close in orbits around WASP-47 (Becker et al. 2015), which leads to the question of whether close-in planets can be detected with space-based photometry for other systems with hot Jupiters.

In this paper, we present the discovery of WASP-92b, WASP-93b and WASP-118b. The latter system will be observed in campaign 8 of the K2 mission. All three of these planetary systems are excellent candidates for spin–orbit alignment follow up.

Section 2 introduces the observational data collected for the systems in this paper. Section 3 presents the spectral analyses of the host stars, and Section 4 describes the methods used to determine the parameters of the newly discovered systems. The discoveries and their tidal evolution are discussed in Section 5.

2 OBSERVATIONS

2.1 WASP photometry

The newly discovered planets presented in this paper were all initially detected from observations of the WASP telescopes – the northern installation (SuperWASP) for WASP-92 and 93, and jointly between north and south (WASP-S) for WASP-118.

WASP-92 (1SWASPJ162646.08+510228.2; \(V = 13.18; \ K = 11.52 \)) was observed with SuperWASP from 2007-03-30 to 2010-08-03. WASP-93 (1SWASPJ003750.11+511719.5; \(V = 10.97; \ K = 9.94 \)) was observed with SuperWASP from 2007-07-26 to 2007-12-25. WASP-118 (1SWASPJ011812.12+024210.2; \(V = 11.02; \ K = 9.79 \)) was observed on both SuperWASP and WASP-S between 2008-07-13 and 2010-12-13. The seasonal intervals and quantities of photometric points for these measurements are shown in Table 1.

The collected photometric data for these systems was detrended and searched for transit signals using the algorithms described in Cameron et al. (2006). All three were selected as high priority candidates for follow-up photometry and spectroscopy using the treatment of Cameron et al. (2007). The key component of the candidate identification is to search the photometric data collected by the WASP telescopes for a periodic transit signal using an adaptation of the Kovács, Zucker & Mazeh (2002) Box-Least Squares (BLS) algorithm. WASP-92 was selected with a 2.175 d periodic transit signature, WASP-93 with a 2.732 d period, and WASP-118 with a 4.046 d period. The upper plots in Figs 1–3 show the WASP photometry folded on to the best-fitting orbital ephemeris for each system, found in the global system analysis in Section 4.
variation introduced by the observational systematic errors, photon noise and from stellar activity, the scatter in the photometric time series data is fairly large, thus the WASP photometry is also plotted in 200 phase bins. Each bin corresponds to 1/200th of the orbital period, so that the transit shape observed can be clearly seen on the plot.

2.2 Photometric follow-up

Transits of the systems were also observed with a number of different telescopes at a higher cadence than with the WASP cameras to better determine the transit shapes. The dates and details for these observations are shown in Table 2.

Figure 2. The data collected for the WASP-93 system. The plots are presented in the same way as for WASP-92 in Fig. 1.

Figure 3. The observations made of WASP-118, which are presented in the same way as described in the caption of Fig. 1. The HARPS-N data taken as a series during a transit (shown in purple) have open circle markers to denote that the observations were not included in the global fit.

Individual telescopes and instruments used for the transit observations have their own observing techniques and data reduction pipelines, which are briefly described in the following sections. The reduced light curves of these observations for each system are shown in the second plots in Figs 1–3, where all of the data are phased with reference to the epoch of mid-transit.

2.2.1 OverSky observations

OverSky is a 0.36 m robotic telescope in La Palma. It was used for a partial transit of WASP-92b on the night beginning 2012...
July 24. The telescope is installed with an SBIG STL-1001E, which contains a 1024 \times 1024 pixels Kodak KAF-1001E CCD, with active optic SBIG A0L, and using internal guiding during observations. The telescope was in focus throughout the observations, and 179 images of the 19.9 \times 19.9 arcmin field of view (FOV) were taken with a Sloan \textit{r} filter. Each image was the result of a 90 s exposure with 7 s dead time between each for CCD readout.

The images were bias, dark and dust flat calibrated, and the light curve was extracted from the images using Munipack Muniwin 2.0, with two reference stars and one check star in the field.

2.2.2 \textit{NITES} observations

\textit{NITES} (Near \textit{I}nfrared \textit{T}ransiting \textit{Exo}planets5) is a semi-robotic 0.4-m (f/10) Meade LX200GPS Schmidt–Cassegrain telescope installed at the ORM, La Palma. The telescope is mounted with Finger Lakes Instrumentation Proline 4710 camera, containing a 1024 \times 1024 pixels deep-depleted CCD made by e2v. The telescope has an FOV and pixel scale of 11 \times 11 arcmin2 and 0.66 arcsec pixel$^{-1}$, respectively, and a peak quantum efficiency (QE) >90 per cent at 800 nm (McCormac et al. 2014). The observations were all made without a filter, and the telescope defocused to 3.3 arcsec full width at half-maximum (FWHM) for the transit of WASP-92 on 2013 June 26, 2.8 arcsec FWHM on 2013 July 22, and 6.6 arcsec for the transit of WASP-93 on 2012 August 21.

The data were bias-subtracted and flat-field corrected using PyRAF1 and the standard routines in IRAF2 and aperture photometry were performed using DAOPHOT (Stetson 1987). For WASP-92b, eight nearby comparison stars were used, and five for WASP-93b. Aperture radii of 5.9 arcsec, 5.0 arcsec and 10.2 arcsec were chosen for 2013 June 26, 2013 July 22 and 2012 August 21, respectively.

Aperture sizes were chosen to minimize the rms scatter in the out of transit data. Initial photometric error estimates were calculated using the electron noise from the target and the sky and the readout noise within the aperture. The data were normalized with a first-order polynomial fitted to the out-of-transit data.

2.2.3 \textit{RISE} observations

RISE (Rapid Imaging Search for Exoplanets) is an optical camera on the 2-m robotic Liverpool Telescope in La Palma (Gibson et al. 2008; Steele et al. 2008). The camera set up consists of a 1024 \times 1024 pixel e2v CCD, which has a 9.4 \times 9.4 arcmin FOV, and a single fixed filter that equates to V+R band (500–700 nm). The images were debiased and flat-fielded using twilight flats using IRAF routines. The photometric light curves were then extracted for the target and a small number of nearby non-variable comparison stars, and differential photometry performed, all utilizing PyRAF and DAOPHOT routines.

2.2.4 \textit{RATCam} observations

RATCam is an optical CCD imager, which was installed on the Liverpool Telescope until decommissioned in 2014 February (Mottram, Steele & Morales 2004; Steele et al. 2004). The camera was a 2048 \times 2048 pixel EEV CCD, set up with a 4.6 \times 4.6 arcmin FOV.

For the WASP-93 light curve observed on the night beginning 2008-07-10, images were taken in 10 s exposures, which were bias-subtracted and flat-fielded using a recent twilight flat-field image. Aperture photometry was performed using IRAF DAOPHOT routines with three bright non-variable comparison stars in the observed field. The light curve was then binned into sets of three images, resulting in 144 photometric data points.

2.2.5 \textit{PIRATE} observations

\textit{PIRATE} (Physics Innovations Robotic Astronomical Telescope Explorer) is a robotic 0.43-m (f/6.8) corrected Dall–Kirkham telescope operated by AURA for NASA.

1 PyRAF is a product of the Space Telescope Science Institute, which is operated by AURA for NASA.

2 IRAF is distributed by the National Optical Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.
telescope, located at the Observatori Astronomic de Mallorca at the time of the observations (Holmes et al. 2011; Kolb 2014). The facility has a choice of two imaging cameras, the SBIG STL-1001E, which contains a 1024 × 1024 pixel Kodak KAF-1001E CCD, and the SBIG STX-16803, which contains a 4096 × 4096 pixel Kodak KAF-16803 CCD. These two CCDs describe PIRATE’s two operating modes, Mk 1.5 and Mk 2, respectively. The Mk 2 FOV is 43 × 43 arcmin² with a pixel scale of 0.63 arcsec pixel⁻¹ and the peak QE is 0.60 at 550 nm.

The transit observations using PIRATE were made using the Mk 2 operating mode with a Baader R broad-band filter which is equivalent to the APASS r filter, and without a telescope defocus. The 2011-10-31 data set was obtained in 2x2 pixel binning while the rest of the data sets were obtained without binning. The images were bias, dark and flat-field calibrated, before ensemble photometry was performed using DAOPHOT as described in Holmes et al. (2011).

2.2.6 JGT observations

James Gregory Telescope (JGT) is the 0.94-m telescope at the University of St Andrews Observatory. The CCD is a 1024×1024 e2v device, and the telescope has an un-vignetted FOV of 15 arcmin diameter. The JGT data were collected using a standard R-band filter and the telescope in focus. The data collected were corrected with flat-field and bias images, and then relative aperture photometry with a single comparison star was performed using GAIA routines of the STARLINK software packages.³

2.2.7 EulerCam observations

EulerCam is the camera on the 1.2-m Swiss-Euler Telescope in La Silla, Chile (Lendl et al. 2012). The CCD is a 4k×4k e2v deep-depletion silicon device, used in a set up which produces images with an FOV of 15.68 × 15.73 arcmin. Flat-field uncertainties can be a major contributor to high-precision photometry uncertainties, so a precise tracking system is deployed from exposure to exposure to ensure the stellar images remain on the same CCD pixels.

The images were overscan, bias and flat-field corrected before ensemble photometry was performed with 3–10 reference stars. The number of reference stars similar in colour and magnitude to the target used was decided with an iterative process to minimize rms scatter in the transit light curve.

2.2.8 TRAPPIST observations

TRAPPIST (TRAnsiting Planets and Planetesimals Small Telescope) is the 0.6 m robotic telescope in La Silla, operated by Liège University (Jehin et al. 2011). The installed CCD is 2048x2048 pixels, with an FOV of 22 × 22 arcmin. The I+z filter used for the TRAPPIST observations has >90 per cent transmission from 750 to 1100 nm, with the long wavelength cutoff being set by the QE of the CCD detector.

During the use of the telescope, astrometric solutions of the images are used to send pointing corrections to the mount to retain the stellar images on the same pixels throughout observations. After bias, dark and flat-field correction, aperture photometry was extracted from the images using IRAF/DNPHOT2 routines (Stetson 1987).

³ STARLINK is maintained by the East Asian Observatory, and is published as open source at http://starlink.eao.hawaii.edu/starlink.

2.3 Radial velocity follow-up

In order to measure the radial velocity (RV) reflex motion on the star from the planet’s orbit, each of the host stars was observed on multiple occasions with the SOPHIE spectrograph (Perruchot et al. 2008; Bouchy et al. 2009). The SOPHIE spectrograph is installed on the 1.93-m telescope of the Observatoire de Haute-Provence, France. The second fibre is pointed towards the sky to counteract the effect of the moon and sky. SOPHIE has two observing modes, high resolution and high efficiency, so data collected in each mode are considered to be from different instruments that could have a baseline RV offset from each other (Bouchy et al. 2009).

WASP-118 was also observed with the CORALIE spectrograph (Baranne et al. 1996; Queloz et al. 2000), which is mounted on the Swiss Euler 1.2-m telescope. CORALIE points its second spectrograph fibre on a calibration lamp, and lunar contamination is avoided by observing only when the moon is not present. The CORALIE set-up was upgraded in 2014 November, thus data from before and after this upgrade are treated as separate instruments, which could have an offset in the measured RVs.

For data from each of the spectrographs, radial velocities were computed from the spectra by weighted cross-correlation (CCF) (Pepe et al. 2002) using a numerical G2-spectral template.

WASP-118 has been further observed with the HARPS-N instrument on the 3.6-m Telescopio Nazionale Galileo (TNG) on La Palma (Cosentino et al. 2012). An attempt was made to collect spectra during a transit on 2015 October 1 of the object to determine orbital obliquity, but cloud cover prevented data collection. Three further spectral observations were made during the following orbit, two of which were during the transit. As with SOPHIE observations, the second spectrograph fibre was led from an off-target aperture in the telescope focal plane to allow accurate sky background subtraction. These observations were reduced with the data reduction software (DRS) version 3.7, for which one of the outputs is RV measurements calculated from a Gaussian fit to the mean CCF obtained from each spectral order.

The details of the RV observation intervals are presented in Table 3. The lower two plots in Figs 1–3 show the RV data collected for these systems plotted on the best-fitting model found in this work, and the residuals of this fit. The third plot in Fig. 2
WASP-93, it is an early-to-mid K spectral type dwarf star. WASP-93, we infer that this companion has $J = 13.45 \pm 0.18$, $H = 13.45 \pm 0.10$ and $K_s = 13.31 \pm 0.13$, and if it is associated with WASP-93, it is an early-to-mid K spectral type dwarf star.

![Figure 4](https://example.com/figure4.png)

Figure 4. H-band image of WASP-93 with correction to 0.14 arcsec, which was taken with INGRID on the WHT in 2011. This image was observed in telescope sky position angle 0° North is up, and East is to the right. The position of the faint companion relative to North remained unchanged in images at different sky position angles, confirming that this companion is not an artefact of the PSF.

shows a clustering of the RV data around the transit section of the orbital phase, which is due to two attempts to observe the Rossiter–McLaughlin (RM) effect (Rossiter 1924; McLaughlin 1924).

From the RV measurement determination, measurements for different stellar activity indicators were extracted from the CCFs: FWHM, line bisector inverse slope (BIS) and contrast. The uncertainties have been scaled from the RV error as presented in Sesterne et al. (2015). These measurements were not possible using the spectra taken with SOPHIE of WASP-93 due to the very broad CCF resulting from the fast rotation of the star.

An Hα spectrum of WASP-93 was also obtained using the William Herschel Telescope (WHT) and the red arm of the Intermediate dispersion Spectrograph and Imaging System (ISIS) on 2012 December 23. The spectrum covers 6161–6953 Å at a reciprocal dispersion of 0.248 Å pixel$^{-1}$ and a resolution of approximately 0.75 Å. The data were reduced and flux-calibrated using standard methods as implemented in the PAMELA and MOLLY software (Marsh 1989).4

2.4 Adaptive optics imaging follow up

To investigate blend scenarios we acquired high-resolution J, H and K_s band images of WASP-93 on the night of 2011 August 13 with the near-infrared camera INGRID fed by the NAOMI adaptive-optics system on the 4.2-m WHT. Images were taken in multiple sky position angles (0°, 20° and 35°) in order to rule out false positive detections related to PSF features. Natural (open loop) seeing ranged from 0.6 to 0.8 arcsec in the H band, and images with corrected FWHM 0.15 arcsec in the H and K_s bands, and 0.20 arcsec in the J band, were secured. The H-band image is shown in Fig. 4.

These images show that WASP-93 has a nearby stellar companion 0.69 ± 0.01 arcsec away in position angle 220° ± 0.60, which is fainter by 3.70 ± 0.18, 3.45 ± 0.10 and 3.37 ± 0.13 mag, respectively, in the J, H and K_s bands. Using the 2MASS magnitudes of WASP-93, we infer that this companion has $J = 13.93 \pm 0.18$, $H = 13.45 \pm 0.10$ and $K_s = 13.31 \pm 0.13$, and if it is associated with WASP-93, it is an early-to-mid K spectral type dwarf star.

No other sources are detected in the 40 arcsec FOV of INGRID to 5-sigma limiting magnitudes of $J \sim 19.0 \pm 0.35$, $H \sim 19.0 \pm 0.35$ and $K_s \sim 18.2 \pm 0.35$ at distances $> 4 \times $FWHM from the centre of the corrected profile, or to ~ 2 mag brighter than these limits down to 1.5 × FWHM from the stellar core.

3 STELLAR PARAMETERS FROM SPECTRA

3.1 WASP-92 stellar parameters

Individual SOPHIE spectra with no moon pollution of WASP-92 were co-added to produce a single spectrum with a typical signal-to-noise ratio (SNR) of around 25:1. The standard pipeline reduction products were used in the analysis. The analysis was performed using the methods given in Doyle et al. (2013). The parameters obtained from the analysis are listed in the spectroscopic section of Table 4. The effective temperature ($T_{ eff}$) was determined from the excitation balance of the Fe i lines. The Na i D lines and the ionization balance of Fe i and Fe ii were used as surface gravity ($\log g$) diagnostics. The iron abundance was determined from equivalent width measurements of several unblended iron lines. A value for microturbulence (ξ) was determined from Fe i using the method of Magain (1984). The quoted error estimates include that given by the uncertainties in $T_{ eff}$ and $\log g$, as well as the scatter due to measurement and atomic data uncertainties. Interstellar Na D lines are present in the spectra with equivalent widths of $\sim 0.02 \AA$, indicating an extinction of $E(B-V) = 0.005 \pm 0.001$ using the calibration of Munari & Zwitter (1997).

The projected stellar rotation velocity ($v \sin i$) was determined by fitting the profiles of several unblended Fe i lines. A value for microturbulence (v_{micro}) of 4.97 ± 0.73 km s$^{-1}$ was determined from the calibration of Doyle et al. (2014). An instrumental FWHM of 0.15 ± 0.01 Å was determined from the telluric lines around 6300 Å. A best-fitting value of $v \sin i = 5.73 \pm 1.15$ km s$^{-1}$ was obtained.

Lithium is detected in the spectra, with an equivalent width upper limit of 52 mÅ, corresponding to an abundance upper limit of log A(Li) 2.70 ± 0.09. This implies an age of several Myr (Sestito & Randich 2005).

The rotation rate ($P = 10.07 \pm 2.58$ d) implied by the $v \sin i$ and stellar radius gives a gyrochronological age of $\sim 2.29 \pm 0.80$ Gyr using the Barnes (2007) relation.

3.2 WASP-93 stellar parameters

The analysis for WASP-93 was performed as for WASP-92 with co-added spectra with no moon pollution. This produced a master spectrum with a typical SNR around 50:1, however the high $v \sin i$ of WASP-93 required some different techniques to determine stellar parameters. For example, the $v \sin i$ was too high to measure a sufficient number of Fe lines in order to obtain the effective temperature ($T_{ eff}$) from the excitation balance. As the SOPHIE spectra were unsuitable for measuring the Balmer lines, an ISIS spectrum of the Hα region was used instead. The high stellar rotation also meant that determining a value for microturbulence (ξ) was not possible. For WASP-93, the interstellar Na D lines indicate an extinction of $E(B-V) = 0.07 \pm 0.02$.

It should also be noted that whilst a value for microturbulence (v_{micro}) was found using the same method as above to be 6.95 ± 0.73 km s$^{-1}$, it has a negligible influence on line broadening with such a high $v \sin i$. The same instrumental FWHM was found in the WASP-93 data.
Table 4. Table of planetary and stellar parameters found in the global system fit for WASP-92, 93 and 118.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>WASP-92</th>
<th>WASP-93</th>
<th>WASP-118</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>General information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RA</td>
<td></td>
<td>16 26m 46.08s</td>
<td>00 37m 50.11s</td>
<td>01 18m 12.12s</td>
<td>J2000</td>
</tr>
<tr>
<td>Dec</td>
<td></td>
<td>+51° 02’ 28.2”</td>
<td>+51° 17’ 19.5”</td>
<td>+02° 42’ 10.2”</td>
<td>J2000</td>
</tr>
<tr>
<td>V magnitude</td>
<td></td>
<td>13.18</td>
<td>10.97</td>
<td>11.02</td>
<td></td>
</tr>
<tr>
<td>K magnitude</td>
<td></td>
<td>11.52</td>
<td>9.94</td>
<td>9.79</td>
<td></td>
</tr>
<tr>
<td>Spectroscopic analysis results</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective temperature</td>
<td>T_{eff}</td>
<td>6280 ± 120</td>
<td>6700 ± 100</td>
<td>6410 ± 125</td>
<td>K</td>
</tr>
<tr>
<td>Stellar surface gravity</td>
<td>$\log g$</td>
<td>4.40 ± 0.12</td>
<td>4.5 ± 0.20</td>
<td>4.30 ± 0.10</td>
<td></td>
</tr>
<tr>
<td>Projected stellar rotation speed</td>
<td>$\upsilon \sin i$</td>
<td>5.73 ± 1.15</td>
<td>37 ± 3</td>
<td>9.68 ± 1.14</td>
<td>km s$^{-1}$</td>
</tr>
<tr>
<td>Macroturbulence</td>
<td>υ_{mac}</td>
<td>4.97 ± 0.73</td>
<td>6.95 ± 0.73</td>
<td>5.77 ± 0.73</td>
<td>km s$^{-1}$</td>
</tr>
<tr>
<td>Macro turbulence</td>
<td>ξ</td>
<td>1.05 ± 0.10</td>
<td>-</td>
<td>1.00 ± 0.06</td>
<td>km s$^{-1}$</td>
</tr>
<tr>
<td>Metallicity</td>
<td>[Fe/H]</td>
<td>0.00 ± 0.14</td>
<td>0.07 ± 0.17</td>
<td>0.16 ± 0.11</td>
<td></td>
</tr>
<tr>
<td>Lithium abundance</td>
<td>$\log A(\text{Li})$</td>
<td>2.70 ± 0.09</td>
<td>< 1.14 ± 0.09</td>
<td>< 1.21 ± 0.09</td>
<td></td>
</tr>
<tr>
<td>Stellar mass</td>
<td>M_*</td>
<td>1.20 ± 0.10</td>
<td>1.30 ± 0.11</td>
<td>1.03 ± 0.08</td>
<td>M_\odot</td>
</tr>
<tr>
<td>Stellar radius</td>
<td>R_*</td>
<td>1.14 ± 0.18</td>
<td>1.06 ± 0.26</td>
<td>1.17 ± 0.16</td>
<td>R_\odot</td>
</tr>
<tr>
<td>Spectral type</td>
<td></td>
<td>F7</td>
<td>F4</td>
<td>F6</td>
<td></td>
</tr>
<tr>
<td>Distance</td>
<td></td>
<td>530 ± 90</td>
<td>250 ± 60</td>
<td>250 ± 35</td>
<td>pc</td>
</tr>
<tr>
<td>MCMC jump parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transit epoch (HJD-2450000.0)</td>
<td>T_0</td>
<td>6381.28340 ± 0.00027</td>
<td>6079.56420 ± 0.00045</td>
<td>6787.81423 ± 0.00062</td>
<td>d</td>
</tr>
<tr>
<td>Orbital period</td>
<td>P</td>
<td>2.1746742 ± 0.0000016</td>
<td>2.7325321 ± 0.0000020</td>
<td>4.0460435 ± 0.0000044</td>
<td>d</td>
</tr>
<tr>
<td>Planet/star area ratio</td>
<td>$(R_p/R_*)^2$</td>
<td>0.01254 ± 0.00029</td>
<td>0.01097 ± 0.00013</td>
<td>0.00755 ± 0.00019</td>
<td>d</td>
</tr>
<tr>
<td>Transit duration</td>
<td>τ_T</td>
<td>0.1153 ± 0.0012</td>
<td>0.0931 ± 0.0010</td>
<td>0.2002 ± 0.0019</td>
<td>d</td>
</tr>
<tr>
<td>Impact parameter</td>
<td>b</td>
<td>0.608 ± 0.043</td>
<td>0.9036 ± 0.009</td>
<td>0.16 ± 0.10</td>
<td>R_\star</td>
</tr>
<tr>
<td>Stellar effective temperature</td>
<td>T_{eff}</td>
<td>6258. ± 120</td>
<td>6696. ± 101.</td>
<td>6420. ± 121.</td>
<td>K</td>
</tr>
<tr>
<td>Metallicity</td>
<td>[Fe/H]</td>
<td>0.00 ± 0.14</td>
<td>0.06 ± 0.17</td>
<td>0.16 ± 0.11</td>
<td></td>
</tr>
<tr>
<td>Stellar reflex velocity</td>
<td>K_1</td>
<td>0.1116 ± 0.0002</td>
<td>0.174 ± 0.034</td>
<td>0.0546 ± 0.0019</td>
<td>km s$^{-1}$</td>
</tr>
<tr>
<td>Deduced stellar parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stellar density</td>
<td>ρ_*</td>
<td>0.495 ± 0.055</td>
<td>0.376 ± 0.028</td>
<td>0.271 ± 0.012</td>
<td>ρ_\odot</td>
</tr>
<tr>
<td>Stellar surface gravity</td>
<td>$\log g_*$</td>
<td>4.259 ± 0.031</td>
<td>4.197 ± 0.019</td>
<td>4.100 ± 0.012</td>
<td>(cgs)</td>
</tr>
<tr>
<td>Projected stellar rotation speed</td>
<td>$\upsilon \sin i$</td>
<td>5.73 (fixed)</td>
<td>37.0 (fixed)</td>
<td>9.68 (fixed)</td>
<td>km s$^{-1}$</td>
</tr>
<tr>
<td>Stellar radius</td>
<td>R_*</td>
<td>1.341 ± 0.058</td>
<td>1.524 ± 0.040</td>
<td>1.696 ± 0.029</td>
<td>R_\odot</td>
</tr>
<tr>
<td>Stellar mass</td>
<td>M_*</td>
<td>1.190 ± 0.037</td>
<td>1.334 ± 0.033</td>
<td>1.320 ± 0.035</td>
<td>M_\odot</td>
</tr>
<tr>
<td>Scaled stellar radius</td>
<td>R_*/α</td>
<td>0.1790 ± 0.0067</td>
<td>0.1684 ± 0.0037</td>
<td>0.1445 ± 0.0022</td>
<td></td>
</tr>
<tr>
<td>Centre-of-mass velocity</td>
<td>γ</td>
<td>−29.1683 ± 0.0067</td>
<td>−2.785 ± 0.029</td>
<td>5.8826 ± 0.0038</td>
<td>km s$^{-1}$</td>
</tr>
<tr>
<td>Deduced planet parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orbital separation</td>
<td>a</td>
<td>0.03480 ± 0.00036</td>
<td>0.04211 ± 0.00035</td>
<td>0.05453 ± 0.00048</td>
<td>au</td>
</tr>
<tr>
<td>Orbital inclination</td>
<td>i</td>
<td>83.75 ± 0.69</td>
<td>81.18 ± 0.29</td>
<td>88.70 ± 0.90</td>
<td>°</td>
</tr>
<tr>
<td>Orbital eccentricity</td>
<td>e</td>
<td>0 (fixed)</td>
<td>0 (fixed)</td>
<td>0 (fixed)</td>
<td></td>
</tr>
<tr>
<td>Argument of periastron</td>
<td>ω</td>
<td>0 (fixed)</td>
<td>0 (fixed)</td>
<td>0 (fixed)</td>
<td></td>
</tr>
<tr>
<td>Spin–orbit misalignment angle</td>
<td>λ</td>
<td>0 (fixed)</td>
<td>0 (fixed)</td>
<td>0 (fixed)</td>
<td></td>
</tr>
<tr>
<td>Planet radius</td>
<td>R_\star</td>
<td>1.461 ± 0.077</td>
<td>1.597 ± 0.077</td>
<td>1.440 ± 0.036</td>
<td>R_\odot</td>
</tr>
<tr>
<td>Planet mass</td>
<td>M_\star</td>
<td>0.805 ± 0.068</td>
<td>1.47 ± 0.29</td>
<td>0.514 ± 0.020</td>
<td>M_\odot</td>
</tr>
<tr>
<td>Planet surface gravity</td>
<td>$\log g_\star$</td>
<td>2.939 ± 0.056</td>
<td>3.120 ± 0.093</td>
<td>2.757 ± 0.040</td>
<td>(cgs)</td>
</tr>
<tr>
<td>Planet density</td>
<td>ρ_\star</td>
<td>0.260 ± 0.044</td>
<td>0.360 ± 0.084</td>
<td>0.175 ± 0.018</td>
<td>ρ_\odot</td>
</tr>
<tr>
<td>Planetary equilibrium temperature</td>
<td>T_P</td>
<td>1871. ± 56.</td>
<td>1942. ± 38.</td>
<td>1729. ± 36.</td>
<td>K</td>
</tr>
<tr>
<td>Roche limit</td>
<td>a_R</td>
<td>0.0171 ± 0.00010</td>
<td>0.0157 ± 0.00015</td>
<td>0.0204 ± 0.00009</td>
<td>au</td>
</tr>
<tr>
<td>Roche separation</td>
<td>$a/\gamma R_\star$</td>
<td>2.038 ± 0.026</td>
<td>2.685 ± 0.245</td>
<td>2.671 ± 0.099</td>
<td></td>
</tr>
</tbody>
</table>

Note on spectroscopic parameters: mass and radius estimate using the Torres, Andersen & Giménez (2010) calibration. Spectral type estimated from T_{eff} using the table in Gray (2008). Abundances are relative to the solar values obtained by Asplund et al. (2009). **Note on MCMC parameters:** the Roche limit is $a_R = 2.16 R_\star (M_\star/M_\odot)^{1/3}$, as defined in Ford & Rasio (2006).

Unlike WASP-92, there is no significant detection of lithium in the spectra, with an equivalent width upper limit of 0.01 mÅ, corresponding to an abundance upper limit of $\log A(\text{Li}) < 1.14 \pm 0.09$. This implies an age of several Gyr (Sestito & Randich 2005).

The rotation rate ($P = 1.45 \pm 0.4$ d) implied by the $\upsilon \sin i$ and stellar radius gives a gyrochronological age of $\sim 0.70 \pm 0.65$ Gyr using the Barnes (2007) relation.

3.3 WASP-118 stellar parameters

The co-added CORALIE spectrum of WASP-118 was also analysed using the same techniques as for WASP-92 with no moon pollution. The typical SNR of the spectrum was around 50:1. For WASP-92, the interstellar Na D lines indicated an extinction of $E(B-V) = 0.10 \pm 0.03$, using the same technique as above. A value for macroturbulence (υ_{mac}) of 5.77 ± 0.73 km s$^{-1}$ was determined,
and stellar radius gives a gyrochronological age of \sim1 Gyr (Sestito & Randich 2005). This implies an age of several Gyr (Sestito & Randich 2005).

were not available for WASP-93, as discussed in Section 2.3. Fig. 5 shows the distribution of RV against BIS, where low correlation is seen between these quantities. The Spearman’s rank correlation coefficients (ρ) are shown in the upper left of the plots.

There is no significant detection of lithium in the spectra of WASP-92, 93 and 118, which indicates that stellar spot transits are not being mistaken for telluric lines around 6300 Å.

The rotation rate ($P = 6.12 \pm 1.11$ d) implied by the measured RV semi-amplitude ($K_1 = 1.21 \pm 0.09$ km s$^{-1}$) is orbital eccentricity proxy, indicating a gyrochronological age of $\sim 1.17^{+0.72}_{-0.52}$ Gyr using the Barnes (2007) relation.

3.4 Stellar activity analysis

Each of the WASP photometric data series was searched for periodic modulations, which could be attributed to stellar rotation, using the sine-wave fitting method described in Maxted et al. (2011). No signals down to amplitudes of 3 mmag were detected in the light curves of WASP-92, 93 and 118, which indicates that stellar spot activity on these three planet-hosts is at a low level.

Whilst the stability in time of the transit signatures in the photometry indicates that stellar spot transits are not being mistaken for planets, it is useful to also investigate the stellar activity indicators in the collected spectra. A correlation between RV and BIS would be an indicator that the periodicity seen in the RV is caused by stellar activity, or a blended background binary. BIS measurements were not available for WASP-93, as discussed in Section 2.3. Fig. 5 shows the distribution of RV against BIS, where low correlation is seen between these quantities. The Spearman’s rank correlation coefficients for each are below 0.25, which confirms our confidence that the observed periodic RV signal is of a planetary nature.

Table 5. Details of jump parameters used in final global MCMC analysis.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Prior shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_0</td>
<td>Transit epoch, HJD - 2450000.0</td>
<td>Uniform</td>
</tr>
<tr>
<td>P</td>
<td>Orbital period, d</td>
<td>Uniform</td>
</tr>
<tr>
<td>ΔF</td>
<td>Transit depth, mag</td>
<td>Uniform</td>
</tr>
<tr>
<td>t_T</td>
<td>Transit duration, d</td>
<td>Uniform</td>
</tr>
<tr>
<td>b</td>
<td>Impact parameter, R_*</td>
<td>Uniform</td>
</tr>
<tr>
<td>T_{eff}</td>
<td>Stellar effective temperature, K</td>
<td>Gaussian</td>
</tr>
<tr>
<td>[Fe/H]</td>
<td>Stellar abundance</td>
<td>Gaussian</td>
</tr>
<tr>
<td>K_1</td>
<td>RV semi-amplitude, km s$^{-1}$</td>
<td>Uniform</td>
</tr>
</tbody>
</table>

Optional parameters

- $\sqrt{e} \cos \omega$
- $\sqrt{e} \sin \omega$
- $\sqrt{v \sin i} \sin \lambda$
- $\sqrt{v \sin i} \cos \lambda$
- FWHM_p
- $v \sin i$
- λ
- $\pi / \Delta 1$

Note. * Parameters used only when a non-circular orbit is allowed.

4 PLANETARY SYSTEM PARAMETER DETERMINATION

The majority of the orbital system parameter fitting performed for planets discovered by the WASP consortium uses a Markov Chain Monte Carlo (MCMC) algorithm based on the method described by Cameron et al. (2007), and expanded upon in Pollacco et al. (2008). The key component of this algorithm is that the values of the selected parameters perform a random walk in the parameter space, which allows the joint posterior probability distribution of the fitting parameters to be mapped.

The transit light curves are modelled using the analytic formulae of Mandel & Agol (2002), which calculates the amount of light obscured by two overlapping discs, where the larger disc (representing the star) is limb darkened. In this case the formulation was used with the non-linear limb darkening law with the coefficients determined from the tables of Claret (2000) at each step depending on the stellar temperature sampled. The RV fit is performed by fitting a Keplerian to the RV data points, and the RM effect (when observations are available) is modelled with the equations presented by Ohta, Taruya & Suto (2005). Each individual RV data set is assigned a floating instrumental zero-point velocity of its own, which is determined at each MCMC trial by inverse variance weighted averaging of the RV residuals following subtraction of the orbital velocities derived from the current model – for the fits presented here, the zero-point differences calculated between instruments were all smaller than 0.1 m s$^{-1}$.

The jump parameters used in the MCMC analysis are listed with their definitions in Table 5. The parameters used have been updated from those listed in Cameron et al. (2007) by Enoch et al. (2010) and Anderson et al. (2011) to ensure that truly uniform priors are used. Where an eccentric orbital solution is allowed, $\sqrt{e} \cos \omega$ and $\sqrt{e} \sin \omega$ were also used as jump parameters, where e is orbital eccentricity and ω is the argument of periastron. With modelling of the RM effect, $\sqrt{v \sin i} \sin \lambda$ and $\sqrt{v \sin i} \cos \lambda$ were used as jump parameters, where λ is the projected angle between the orbital motion of the planet and the rotational motion of the star. The particular
formulation of jump parameters has been selected to ensure as little correlation between parameters as possible, and so that each jump is in a uniform prior probability distribution.

This MCMC parameter fitting analysis was performed for each of WASP-92, 93 and 118 using the WASP photometry, follow up photometric light curves and spectroscopic follow up data relevant to each target. The values and uncertainties for stellar properties found in the spectral analysis in Section 3 were used as initial values, and the orbital parameters were initialized from a BLSs fit of the WASP photometry.

The final parameters found in the analysis are quoted in Table 4. For each system, a circular orbit was assumed for a preliminary fit, which was then allowed to be eccentric in a subsequent fit. In each case, there was not enough statistical justification that adding the eccentricity parameters improved the fit of the system, which was determined using the Bayesian Information Criterion (BIC) (Schwarz 1978; Kass & Raftery 1995). Thus, the circular orbital solutions were used as the final results.

5 RESULTS AND DISCUSSION

5.1 WASP-92 system

WASP-92b is an $\sim 0.81 \, M_J$ planet in a 2.17 d orbit around an F7 spectral type star. The BAGEMASS tool presented in Maxted, Serenelli & Southworth (2015) was used with the observed measurements for [Fe/H], T_{eff} and ρ_* to estimate the age and mass of WASP-92, which were found to be 2.99 ± 1.03 Gyr and $1.21 \pm 0.06 \, M_\odot$. The posterior distributions of this analysis can be seen in the upper plot of Fig. 6 with the associated stellar evolution tracks and isochrones for the optimal mass and age found by the BAGEMASS tool. The tracks used by the tool were calculated from the GARSTEC code (Weiss & Schlattl 2008). These results are in agreement with the gyrochronological age presented in Section 3.1, but much older than the age suggested by the lithium abundance observed in the spectra. The mass deduced from the MCMC jump parameters was used to calculate the planetary mass quoted.

When the solution for the system was allowed to include eccentricity, the value for e found was $0.084^{+0.118}_{-0.060}$, which affected each of the reported parameters by <5 per cent. The BIC for the eccentric solution was 19.1, and 5.7 for the circular solution. Given the low value for eccentricity found and a $\Delta \text{BIC} > 10$, which Kass & Raftery (1995) indicate is very strong evidence against additional free parameters, the orbit of WASP-92b can justifiably be treated as circular. The parameters found in the fit for a circular orbit were used as the final parameters.

5.1.1 Blend scenario

This work does not include AO imaging of WASP-92, but their inclusion is not required to support the planetary nature of the transiting object. If an associated binary system were unresolved and was producing the observed periodic transit signal blended with the light of WASP-92, the masses of the objects required to make such a transit shape would produce a significantly larger RV amplitude than observed. A background binary system producing the transit signal would not show a periodic signal in the RV measurements phased with the transit observations (Santerne et al. 2012). The

\[\Delta \text{BIC} = \text{BIC}_{\text{circ}} - \text{BIC}_{\text{ecc}}. \]

Figure 6. Results of the BAGEMASS MCMC analysis for WASP-92 (upper plot); WASP-93 (middle), and WASP-118 (lower). For each of the plots, the dotted black line is the ZAMS. The solid blue line is the evolutionary track for the mass found, and the dashed tracks either side are for the 1-\(\sigma\) error of the mass. The solid orange line is the isochrone for the stellar age found, with the 1-\(\sigma\) error denoted by dashed lines in the same colour. The density of MCMC samples is shown in the colour scale of the posterior distribution plotted.
consistency between the results of the photometry and RVs is in strong support of the planetary parameters presented in this work.

AO imaging could be used to more precisely determine the degree to which WASP-92 is blended with background objects or any potential long-period stellar companions, which would dilute the transit depth and RV amplitude. The inflated radius of WASP-92b suggests that this dilution is small, but AO images could quantify the effect.

5.1.2 Tidal evolution

Using the parameters of the orbital solution, the tidal stability of the system can be investigated. The majority of hot Jupiters observed are in Darwin-unstable orbits (Darwin 1879), where the planet is migrating towards the Roche limit of the system and tidal disruption of the planet (Matsumura et al. 2010). No stable orbits exist if the total angular momentum of the system, \(L_{\text{tot}} \), is below a critical angular momentum, \(L_c \),

\[
L_c = 4 \left(\frac{G^2 M_\star^2 M_p}{27 M_\star + M_p} \left(C_s + C_p \right) \right)^{\frac{1}{3}},
\]

where \(C_s \) and \(C_p \) are the moments of inertia of the star and planet, respectively (Counselman 1973; Hut 1980). The total angular momentum is defined as

\[
L_{\text{tot}} = L_{\text{orb}} + C_s \omega_s + C_p \omega_p \tag{2}
\]

where \(\omega_s \) and \(\omega_p \) are the angular velocities of rotation of the star and planet, respectively, and \(L_{\text{orb}} = M_\star M_p \sqrt{\frac{G (1-e^2)}{M_\star + M_p}} \). For WASP-92, \(L_{\text{orb}} / L_c \sim 0.67 \), which indicates that the planetary orbit is unstable and is continuing to migrate inwards towards the Roche limit, which is the case for most hot Jupiters (Levrard, Winnisdoerffer & Chabrier 2009; Matsumura et al. 2010). Fig. 7 illustrates that the current total angular momentum for the WASP-92 system (shown in green) is lower than the angular momentum required for a dual synchronous orbit (shown in blue).

The rate of this migration can be estimated by

\[
t_{\text{remain}} = \frac{2Q^*_s,0 M_\star}{117n M_p} \left(\frac{a}{R_\star} \right)^5 \tag{3}
\]

as presented in Brown et al. (2011) for slowly rotating stars, where \(Q^*_s,0 \) is the current tidal quality factor for the star and \(n \) is the orbital frequency. If \(Q^*_s,0 \) is set to \(10^6 \), the spiral in time \((t_{\text{remain}}) \) is approximately 16 Gyr, which is significantly longer than the remaining lifetime of the host star. For lower values of \(Q^*_s \), the decay time-scale remains too large for changes in the orbital period to be observable – a period change of \(>60s \) will occur after \(\sim 20 \) Myr for \(Q^*_s,0 = 10^6 \) when solely accounting for the effects of tidal orbital decay.

5.2 WASP-93 system

WASP-93b is an \(\sim 1.47 M_J \) planet in a 2.73 d orbit around an F4 spectral type star. BAGEMASS was used for the WASP-93 system, resulting in age and mass estimates of 1.61 ± 0.48 Gyr and 1.39 ± 0.08 M⊙. This age estimate is just beyond the upper 1-σ uncertainty for the age derived from gyrochronology, and below the estimate of several Gyr from the lithium abundance. All of the stellar mass values quoted are consistent with each other, and the planetary mass

\[\text{has been determined with the stellar mass value found from the stellar density which was a jump parameter in the MCMC analysis.}

When the eccentricity parameters were included in the orbital solution, the value for \(e \) found was 0.012 \(^{+0.035}_{-0.008} \), and eccentric BIC was 168.3 and circular BIC was 147.4. The orbit is assumed to be circular, as the value for \(e \) is small, and the ΔBIC>10.

In Section 2.3 it was mentioned that two attempts were made to collect a time series of spectra during transits of WASP-93b. Due to uncertainty in the transit ephemeris at the time of these observations, the measurements are not well centred on the mid-transit time. The CCFs for these observations were reduced as described in Collier Cameron et al. (2010), and included in the fit, which now includes the orbital obliquity and FWHM of the planet signal in the CCF as jump parameters. The MCMC code did not converge on a solution when including the CCFs to determine orbital obliquity, which indicates that the SOPHIE spectra were not of a high enough precision to determine the misalignment of the transit of WASP-93b. A value for the orbital obliquity was also not found when the \(\sin i \) was fixed to the value found in the global fit presented in Table 4, 37.0 km s\(^{-1}\).

The maximum amplitude of the RV anomaly produced by the RM effect is defined as

\[
\Delta RV_{\text{RM}} = \sqrt{1 - b^2} \left(\frac{R_p}{R_\star} \right)^2 v \sin i \tag{4}
\]

which equates to \(\sim 0.18 \) km s\(^{-1}\) for WASP-93. The true value for the amplitude of the RM effect anomaly is also dependent on the orbital obliquity, thus will likely have a smaller amplitude than the
maximum value. The average 1σ uncertainty for the first series of spectra is 0.13 km s$^{-1}$ and 0.11 km s$^{-1}$ for the second, which will make the effect difficult to detect above the noise in the CCFs. The lower plot in Fig. 8 shows the RV measurements calculated for the CCFs shown in the upper plot with reference to transit phase. The plotted RM effect model is for an aligned orbit, for the data shown, it is unclear what the best-fitting shape of the RM effect curve should be, which further indicates that higher quality data are required to fully determine the orbital obliquity of the WASP-93 system.

The upper plot in Fig. 8 shows the time series of the residuals of the CCFs after the subtraction of the average CCF shape, in which a signature of planetary transit is visible near the blueshifted limb of the CCF. Lower plot showing the RV measurements around the transit phase. The colours used correspond to those in the lower plot of Fig. 2, and the green and blue RV points match the CCFs shown in the left and right of the upper plot, respectively. The RV and RM effect model overplotted in black is for the case that the planetary orbit and the stellar spin are aligned.

5.2.2 Blend scenario

Given the shape of the transit appears to be almost v-shaped, it is important to investigate whether a background blended eclipsing binary or hierarchical triple system could be producing the eclipse signal observed in the light curve of WASP-93 and the RV variation detected. The AO image shows a blended stellar companion separated by 0.69 ± 0.01 arcsec, which is fainter by more than 3 mag in the J, H and K bands. Given that the observed companion is a cooler star than WASP-93, the magnitude difference will be larger in the visible photometric bands that the transits were observed in. Even if the star was fully occulted by a non-emitting body, which is physically very unlikely, the transit could not be reproduced by this companion in the visible photometric bands. The AO imaging also shows no other stellar bodies beyond 0.3 arcsec of the stellar core of WASP-93 which would be bright enough to produce an eclipse mimicking a planet transiting WASP-93.

Whilst the transit signal could be created by a chance-aligned background eclipsing binary which is not resolved in the AO images, this scenario is extremely unlikely given the small region of space where a bright enough stellar binary system would have to exist to remain unresolved in the AO image.

The most likely blend scenario would be that WASP-93 is a hierarchical triple system, but this would produce a blended line profile in the observed CCFs. Even with CCFs calculated to ±100 km s$^{-1}$ from the systemic RV, there is no evidence of an additional line profile. The modulation of the CCF shape during the transit also confirms the planetary nature of the signal, rather than that of a hierarchical triple system.

5.2.2 Tidal evolution

In general, observed hot Jupiters do not have enough angular momentum ($L_{\text{tot}} > L_c$) to reach tidal equilibrium, as noted by Levrard et al. (2009) and Matsumura et al. (2010). Specifically for WASP-93, $L_{\text{tot}}/L_c = 1.57 \pm 0.16$. Tidal equilibrium is characterized by the minimization of total orbital and spin energy, constrained by the conservation of angular momentum. Fig. 9 shows where the current angular momentum of the system (in green) intersects with the
angular momentum curve for the dual synchronous state (in blue), which is where stable orbits exist. The current orbital separation of the star and planet (in red) is between the inner and outer equilibrium states. The inner equilibrium is unstable, which can be seen in the lower plot demonstrating the total energy of the system, where that equilibrium denotes a maximum in energy. The energy in the plot has been defined as

$$E_{\text{tot}} = -\frac{GM_* M_p}{2a} + \frac{1}{2} C_r \omega_*^2 + \frac{1}{2} C_p \omega_p^2,$$

(5)

where the first term is the orbital energy, and the remaining terms are the rotational energy of the star and planet, respectively. In the case of pseudo-synchronization, the orbital frequency, \(n = \omega_p\), and the value for \(\omega_*\) are determined by angular momentum conservation (green line) or synchronization with the orbital frequency (blue line).

If the planetary orbit and the stellar spin are aligned and since angular momentum is conserved, the WASP-93 system will migrate along the path of constant \(L\) until it reaches the outer equilibrium, which is at an energy minimum and is a Darwin stable dual-synchronized orbit. The time-scale for this outwards migration can be approximated using a numerical integration of equation (18) from Matsumura et al. (2010). Using this integration, the time-scale until the equilibrium orbit is reached is \(\sim 2 \times 10^7\) Gyr for \(Q_{\omega,0} = 10^3\), which is far longer than the remaining lifetime of the star even for lower values of \(Q_{\omega,0}\). The time-scale for an observable change in the orbital period (>60 s) is also too long to detect at \(\sim 50\) Myr for \(Q_{\omega,0} = 10^8\).

Since the tomographic analysis indicates that the orbit of the planet is significantly misaligned with the spin axis of the host star, the current total angular momentum of the system in the plane of the stellar rotation is lower than if the system were aligned. If the orbits are misaligned, beyond \(\lambda \sim 30^\circ\), which is indicated by the tomographic signal, then either \(L_{\text{ini}} < L_c\) or the current separation of the star and the planet would mean that the planet is tidally migrating towards its host star.

5.3 WASP-118 system

WASP-118b is an \(\sim 0.55\) M\(_J\) planet in a 4.04 d orbit around an F6 spectral type star. \(\text{BAGEMASS}\) was also used to obtain mass and age estimates for WASP-118, which gave 2.38 \(+0.38\) \(-0.40\) Gyr and \(1.40 \pm 0.05\) M\(_J\). The results of the \(\text{BAGEMASS}\) modelling are shown in the lower plot in Fig. 6, which shows that WASP-118 is slightly evolved. This result for the stellar age is in agreement with the spectral analysis for this system in Section 3.3. The masses determined in the MCMC analysis and the \(\text{BAGEMASS}\) modelling are consistent with one another, but inconsistent with the value from the spectral analysis shown in Table 4. The spectral analysis technique found the stellar mass using the surface gravity of the star, which is difficult to determine spectroscopically for stars significantly hotter than the Sun (Mortier et al. 2014). Since the stellar density is well determined to determine spectroscopically for stars significantly hotter than the Sun (Mortier et al. 2014). Since the surface gravity of the star is well determined, the uncertainties calculated by the DRS appear lower than would be expected for these conditions. The time series of CCFs collected can be seen in the upper plot of Fig. 10, which highlights the varying observing conditions, and the effect of the 79 per cent illuminated moon an average of 42° away from the star during the observations. The CCFs with the average CCF profile subtracted showed no sign of the planet occulting part of the line profile during transit, which is not surprising given the noisy data.

The scatter in the RV measurements calculated can also be clearly seen in the lower plot in Fig. 10, which shows the measured RVs with respect to transit phase. Due to the concern about the reliability of these measurements, which could bias the results, the global fit was completed and compared with the inclusion and exclusion of this data set.

With the transit series of HARPS-N RVs excluded when the solution was allowed to be non-circular, the value for \(e = 0.089^{+0.057}_{-0.047}\). The associated BICs were 20.3 for a circular solution, and 67.0 for an eccentric solution. If the extra RV points are included in the global fit, \(e = 0.131^{+0.105}_{-0.080}\), and the BIC for a circular solution is 50.3, whereas for a non-circular solution the BIC is 520.4. In each case, the \(\Delta\text{BIC} = \text{BIC}_{\text{ecc}} - \text{BIC}_{\text{circ}} > 10\), which is strong evidence...
The star-planet system, WASP-118, is presented in this work without AO imaging, but as for WASP-92 (described in Section 5.1.1) the planetary nature of the observed orbiting body would not be questioned were AO images to be obtained.

5.3.1 Blend scenario

The star-planet system, WASP-118, is presented in this work without AO imaging, but as for WASP-92 (described in Section 5.1.1) the planetary nature of the observed orbiting body would not be questioned were AO images to be obtained.

5.3.2 Tidal evolution

WASP-118 also has $L_{\text{tot}} > L_\star (\approx 1.07 \pm 0.08)$, thus the system very likely has enough angular momentum to exist in a tidal equilibrium with the same assumptions about the system geometry used above. In order to test whether the system is evolving to a stable orbit, the tidal equilibrium curves for WASP-118 are plotted in Fig. 11 as for WASP-93. The red line denoting the current orbital separation is clearly inside the inner equilibrium state, which indicates the system cannot reach a stable orbit. WASP-118b will follow the path of constant L towards the local lowest energy state, which is tidal migration inwards towards the Roche limit of the star.

Given the relatively high $v\sin i$ of WASP-118, the expression for t_{remain} used for WASP-92b is not an appropriate approximation in this case. In order to estimate the spiral in time for the system, the equation for $dt/\mathrm{d}t^*$ used for WASP-93b from Matsumura et al. (2010) was numerically integrated from the current orbital separation to the stellar radius. In order to construct this integral, it is approximated that $e = 0$, and that the planetary spin is synchronized with the orbital period, which are valid assumptions for a short period giant planet system. We assume that the spin and orbit are aligned, which is implied from the in transit RV measurements for WASP-118. The result of the calculation is $t_{\text{remain}} \approx 150$ Gyr when $Q_{\text{e,0}}^* = 10^7$. As for WASP-92b, the spiral in time-scale of the planet is too long to be observable even with a higher tidal efficiency (lower $Q_{\text{e,0}}^*$).

ACKNOWLEDGEMENTS

KH and ACC acknowledge support from STFC doctoral training grant ST/M503812/1 and grant ST/M001296/1, respectively. We extend our thanks to the staff of the ING for their continued support of SuperWASP. WASP-South is hosted by the South African Astronomical Observatory, and we are grateful for their ongoing support and assistance. The Euler Swiss telescope, installed at La Silla, is supported by the Swiss National Science Foundation. We are all grateful to ESO and its La Silla staff for their continuous support.

TRAPPIST is a project funded by the Belgian Fund for Scientific Research (Fonds National de la Recherche Scientifique, F. R. S.-FNRS) under grant FRFC 2.5.594.09.F, with the participation of the Swiss National Science Foundation. LD acknowledges the support of the F. R. I. A. fund of the FNRS. MG and EJ are FNRS Research Associates. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2013-2016) under grant agreement number 312430 (OPTICON). The WHT is operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. SCCB acknowledges support from the Fundação para a Ciência e a Tecnologia (FCT) through the Investigador FCT Contract No. IF/01312/2014 and the grant reference PTDC/FIS-AST/1526/2014. PAW acknowledges the support of the French Agence Nationale de la Recherche (ANR), under programme ANR-12-BS05-0012 ‘Exo-Atmos’.

REFERENCES

Cosentino R. et al., 2012, Proc. SPIE, 8446, 84461V
Darwin G. H., 1879, Proc. R. Soc. Lond., 29, 168
Holmes S. et al., 2011, PASP, 123, 1177
Jehin E. et al., 2011, The Messenger, 145, 2
Sing D. K. et al., 2016, Nature, 529, 59

1SUPA, School of Physics and Astronomy, University of St Andrews, Fife KY16 9SS, UK
2Department of Physics, University of Warwick, Coventry CV4 7AL, UK
3Institut d’Astrophysique de Paris, UMR CNRS/Université Pierre & Marie Curie, F-75005 Paris, France
4Isaac Newton Group of Telescopes, Apartado de Correos 321, Santa Cruz de La Palma, E-38700, Spain
5Astrophysics Group, Keele University, Staffordshire ST5 5BG, UK
6Instituto de Astrofísica y Ciencias del Espacio, Universidad de Porto, CAUP, Rua das Estrelas, F-4150-762 Porto, Portugal
7Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388 Marseille, France
8Department of Physical Sciences, The Open University, Milton Keynes MK7 6AA, UK
9Université Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France
10Institut d’Astrophysique et Géophysique, Université de Liège, allée du 6 Août 17, B-4000 Liège, Belgium
11Observatoire de Genève, Université de Genève, 51 Chemin des Maillettes, CH-1290 Sauverny, Switzerland
12Instituto de Astronomía, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, 04510, México
13Observatori Astronòmic de Mallorca, Camí de l’Observatori s/n, E-07144 Costitx, Mallorca, Spain
14Astrophysics Research Centre, School of Mathematics & Physics, Queen’s University, Belfast BT7 1NN, UK
15Aryabhatta Research Institute of Observational Sciences (ARIES), Manora peak, Nainital 263002, India
16Space Research Institute, Austrian Academy of Sciences, Schneiderstr. 1, A-8402 Graz, Austria
17Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH, UK
18Instituto de Astrofísica de Canarias (IAC), Vía Láctea s/n, E-38205 La Laguna, Spain
19Departamento de Astrofísica, Universidad de La Laguna, E-38205 La Laguna, Tenerife, Spain
20Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
21OverSky, 47 allée des Palanques, BP 12, F-33127, Saint-Jean-d’Illac, France

This paper has been typeset from a TEX/LATEX file prepared by the author.