Destrade, M and Fu, Y and Nobili, A (2016) Edge wrinkling in elastically supported pre-stressed incompressible isotropic plates. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472 (2193). 20160410 -?. ISSN 1471-2946

[img]
Preview
Text
destrade-nobili-fu-2016.pdf - Accepted Version
Available under License Creative Commons Attribution Non-commercial.

Download (684kB) | Preview

Abstract

The equations governing the appearance of flexural static perturbations at the edge of a semi-infinite thin elastic isotropic plate, subjected to a state of homogeneous bi-axial pre-stress, are derived and solved. The plate is incompressible and supported by a Winkler elastic foundation with, possibly, wavenumber dependence. Small perturbations superposed onto the homogeneous state of pre-stress, within the three-dimensional elasticity theory, are considered. A series expansion of the plate kinematics in the plate thickness provides a consistent expression for the second variation of the potential energy, whose minimization gives the plate governing equations. Consistency considerations supplement a constraint on the scaling of the pre-stress so that the classical Kirchhoff-Love linear theory of pre-stretched elastic plates is retrieved. Moreover, a scaling constraint for the foundation stiffness is also introduced. Edge wrinkling is investigated and compared with body wrinkling. We find that the former always precedes the latter in a state of uni-axial pre-stretch, regardless of the foundation stiffness. By contrast, a general bi-axial pre-stretch state may favour body wrinkling for moderate foundation stiffness. Wavenumber dependence significantly alters the predicted behaviour. The results may be especially relevant to modelling soft biological materials, such as skin or tissues, or stretchable organic thin-films, embedded in a compliant elastic matrix.

Item Type: Article
Uncontrolled Keywords: edge wrinkles, buckling, pre-stressed plate, foundation, incremental deformation
Subjects: Q Science > QA Mathematics
Q Science > QC Physics
T Technology > TA Engineering (General). Civil engineering (General)
Divisions: Faculty of Natural Sciences > School of Computing and Maths
Related URLs:
Depositing User: Symplectic
Date Deposited: 16 Nov 2016 11:10
Last Modified: 07 Sep 2017 01:30
URI: http://eprints.keele.ac.uk/id/eprint/2507

Actions (login required)

View Item View Item