Cristini, A and Hirschi, R and Georgy, C and Meakin, C and Arnett, D and Viallet, M (2014) Linking 1D Stellar Evolution to 3D Hydrodynamical Simulations.


Download (415kB) | Preview


In this contribution we present initial results of a study on convective boundary mixing (CBM) in massive stellar models using the GENEVA stellar evolution code. Before undertaking costly 3D hydrodynamic simulations, it is important to study the general properties of convective boundaries, such as the: composition jump; pressure gradient; and `stiffness'. Models for a 15Mo star were computed. We found that for convective shells above the core, the lower (in radius or mass) boundaries are `stiffer' according to the bulk Richardson number than the relative upper (Schwarzschild) boundaries. Thus, we expect reduced CBM at the lower boundaries in comparison to the upper. This has implications on flame front propagation and the onset of novae.

Item Type: Article
Uncontrolled Keywords: convection, hydrodynamics, stellar dynamics, turbulence, stars: evolution, stars: interiors
Subjects: Q Science > QB Astronomy
Divisions: Faculty of Natural Sciences > School of Physical and Geographical Sciences
Related URLs:
Depositing User: Symplectic
Date Deposited: 23 Apr 2015 10:09
Last Modified: 25 May 2016 10:34

Actions (login required)

View Item View Item