Mennan, C and Garcia, J and McCarthy, H and Owen, S and Perry, J and Wright, K and Banerjee, R and Richardson, JB and Roberts, S (2018) Human Articular Chondrocytes Retain Their Phenotype in Sustained Hypoxia While Normoxia Promotes Their Immunomodulatory Potential. Cartilage. 1947603518769714 - ?. ISSN 1947-6043

[img]
Preview
Text
S Roberts - Human articular chondrocytes retain their phenotype in sustained hypoxia....pdf - Published Version
Available under License Creative Commons Attribution.

Download (743kB) | Preview

Abstract

Objective To assess the phenotype of human articular chondrocytes cultured in normoxia (21% O2) or continuous hypoxia (2% O2). Design Chondrocytes were extracted from patients undergoing total knee replacement ( n = 5) and cultured in ~21% (normoxic chondrocytes, NC) and 2% (hypoxic chondrocytes, HC) oxygen in both monolayer and 3-dimensional (3D) pellet culture and compared with freshly isolated chondrocytes (FC). Cells were assessed by flow cytometry for markers indicative of mesenchymal stromal cells (MSCs), chondrogenic-potency and dedifferentiation. Chondrogenic potency and immunomodulatory gene expression was assessed in NC and HC by reverse transcription quantitative polymerase chain reaction. Immunohistochemistry was used to assess collagen II production following 3D pellet culture. Results NC were positive (>97%, n = 5) for MSC markers, CD73, CD90, and CD105, while HC demonstrated <90% positivity ( n = 4) and FC ( n = 5) less again (CD73 and CD90 <20%; CD105 <40%). The markers CD166 and CD151, indicative of chondrogenic de-differentiation, were significantly higher on NC compared with HC and lowest on FC. NC also produced the highest levels of CD106 and showed the greatest levels of IDO expression, following interferon-γ stimulation, indicating immunomodulatory potential. NC produced the highest levels of CD49c (>60%) compared with HC and FC in which production was <2%. Hypoxic conditions upregulated expression of SOX9, frizzled-related protein ( FRZB), fibroblast growth factor receptor 3 ( FGFR3), and collagen type II ( COL2A1) and downregulated activin receptor-like kinase 1 ( ALK1) in 3 out of 4 patients compared with normoxic conditions for monolayer cells. Conclusions Hypoxic conditions encourage retention of a chondrogenic phenotype with some immunomodulatory potential, whereas normoxia promotes dedifferentiation of chondrocytes toward an MSC phenotype with loss of chondrogenic potency but enhanced immunomodulatory capacity.

Item Type: Article
Additional Information: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Uncontrolled Keywords: Sustained hypoxia, hypoxic workstation, chondrogenic, immunomodulation, cartilage repair
Subjects: R Medicine > R Medicine (General)
Divisions: Faculty of Medicine and Health Sciences > Institute for Science and Technology in Medicine
Related URLs:
Depositing User: Symplectic
Date Deposited: 01 May 2018 14:01
Last Modified: 01 May 2018 14:01
URI: http://eprints.keele.ac.uk/id/eprint/4808

Actions (login required)

View Item View Item