Helmig, D, Petrenko, V, Martinerie, P, Witrant, E, Rockmann, T, Zuiderweg, A, Holzinger, R, Hueber, J, Thompson, C, White, JWC, Sturges, W, Baker, A, Blunier, T, Etheridge, D, Rubino, M and Tans, P (2014) Reconstruction of Northern Hemisphere 1950-2010 atmospheric non-methane hydrocarbons. ATMOSPHERIC CHEMISTRY AND PHYSICS, 14 (3). 1463 - 1483.

[img]
Preview
Text
2014Helmig_Reconstruction of Northern Hemisphere 1950–2010 atmospheric non-methane hydrocarbons.pdf - Published Version
Available under License Creative Commons Attribution.

Download (2MB) | Preview
[img]
Preview
Text
2014Helmig_Reconstruction of Northern Hemisphere 1950–2010 atmospheric non-methane hydrocarbons_Supplement.pdf - Published Version
Available under License Creative Commons Attribution.

Download (693kB) | Preview

Abstract

The short-chain non-methane hydrocarbons (NMHC) are mostly emitted into the atmosphere by anthropogenic processes. Recent studies have pointed out a tight linkage between the atmospheric mole fractions of the NMHC ethane and the atmospheric growth rate of methane. Consequently, atmospheric NMHC are valuable indicators for tracking changes in anthropogenic emissions, photochemical ozone production, and greenhouse gases. This study investigates the 1950–2010 Northern Hemisphere atmospheric C2–C5 NMHC ethane, propane, i-butane, n-butane, i-pentane, and n-pentane by (a) reconstructing atmospheric mole fractions of these trace gases using firn air extracted from three boreholes in 2008 and 2009 at the North Greenland Eemian Ice Drilling (NEEM) site and applying state-of-the-art models of trace gas transport in firn, and by (b) considering eight years of ambient NMHC monitoring data from five Arctic sites within the NOAA Global Monitoring Division (GMD) Cooperative Air Sampling Network. Results indicate that these NMHC increased by ~40–120% after 1950, peaked around 1980 (with the exception of ethane, which peaked approximately 10 yr earlier), and have since dramatically decreased to be now back close to 1950 levels. The earlier peak time of ethane vs. the C3–C5 NMHC suggests that different processes and emissions mitigation measures contributed to the decline in these NMHC. The 60 yr record also illustrates notable increases in the ratios of the isomeric iso-/n-butane and iso-/n-pentane ratios. Comparison of the reconstructed NMHC histories with 1950–2000 volatile organic compounds (VOC) emissions data and with other recently published ethane trend analyses from ambient air Pacific transect data showed (a) better agreement with North America and Western Europe emissions than with total Northern Hemisphere emissions data, and (b) better agreement with other Greenland firn air data NMHC history reconstructions than with the Pacific region trends. These analyses emphasize that for NMHC, having atmospheric lifetimes on the order of < 2 months, the Greenland firn air records are primarily a representation of Western Europe and North America emission histories.

Item Type: Article
Additional Information: © Author(s) 2014. This work is distributed under the Creative Commons Attribution 3.0 License.
Subjects: G Geography. Anthropology. Recreation > G Geography (General)
Divisions: Faculty of Natural Sciences > School of Geography, Geology and the Environment
Related URLs:
Depositing User: Symplectic
Date Deposited: 03 May 2018 14:04
Last Modified: 20 May 2019 14:39
URI: http://eprints.keele.ac.uk/id/eprint/4828

Actions (login required)

View Item View Item