Han, C, Novati, SC, Udalski, A, Lee, CU, Gould, A, Bozza, V, Mróz, P, Pietrukowicz, P, Skowron, J, Szymański, MK, Poleski, R, Soszyński, I, Kozłowski, S, Ulaczyk, K, Pawlak, M, Rybicki, K, Iwanek, P, Albrow, MD, Chung, SJ, Hwang, KH, Jung, YK, Ryu, YH, Shin, IG, Shvartzvald, Y, Yee, JC, Zang, W, Zhu, W, Cha, SM, Kim, DJ, Kim, HW, Kim, SL, Lee, DJ, Lee, Y., Park, BG, Pogge, RW, Kim, WT, Beichman, C, Bryden, G, Carey, S, Gaudi, BS, Henderson, CB, Dominik, M, Helling, C, Hundertmark, M, Jørgensen, UG, Longa-Peña, P, Lowry, S, Sajadian, S, Burgdorf, MJ, Campbell-White, J, Ciceri, S, Evans, DF, Haikala, LK, Hinse, TC, Rahvar, S, Rabus, M and Snodgrass, C (2018) OGLE-2017-BLG-0329L: A Microlensing Binary Characterized with Dramatically Enhanced Precision Using Data from Space-based Observations. Astrophysical Journal, 859 (2). p. 82. ISSN 0004-637X

[img]
Preview
Text
20180614_Han_2018_ApJ_859_82.pdf - Published Version

Download (2MB) | Preview

Abstract

Mass measurements of gravitational microlenses require one to determine the microlens parallax π E, but precise π E measurement, in many cases, is hampered due to the subtlety of the microlens-parallax signal combined with the difficulty of distinguishing the signal from those induced by other higher-order effects. In this work, we present the analysis of the binary-lens event OGLE-2017-BLG-0329, for which π E is measured with a dramatically improved precision using additional data from space-based Spitzer observations. We find that while the parallax model based on the ground-based data cannot be distinguished from a zero-π E model at the 2σ level, the addition of the Spitzer data enables us to identify two classes of solutions, each composed of a pair of solutions according to the well-known ecliptic degeneracy. It is found that the space-based data reduce the measurement uncertainties of the north and east components of the microlens-parallax vector ${{\boldsymbol{\pi }}}_{{\rm{E}}}$ by factors ~18 and ~4, respectively. With the measured microlens parallax combined with the angular Einstein radius measured from the resolved caustic crossings, we find that the lens is composed of a binary with component masses of either (M 1, M 2) ~ (1.1, 0.8) M ⊙ or ~(0.4, 0.3) M ⊙ according to the two solution classes. The first solution is significantly favored but the second cannot be securely ruled out based on the microlensing data alone. However, the degeneracy can be resolved from adaptive optics observations taken ~10 years after the event.

Item Type: Article
Additional Information: This is the final published version of the article (version of record). It first appeared online via IOP at https://doi.org/10.3847/1538-4357/aabd87 - please refer to any applicable terms of use of the publisher.
Uncontrolled Keywords: binaries, general, gravitational lensing, micro
Subjects: Q Science > QB Astronomy > QB460 Astrophysics
Divisions: Faculty of Natural Sciences > School of Chemical and Physical Sciences
Depositing User: Symplectic
Date Deposited: 14 Jun 2018 08:27
Last Modified: 14 Jun 2018 08:29
URI: http://eprints.keele.ac.uk/id/eprint/5017

Actions (login required)

View Item View Item