Combined thermodynamic - geochemical modeling in metamorphic geology: Boron as tracer of fluid-rock interaction

Matthias Konrad-Schmolke* and Ralf Halama

Institute of Earth and Environmental Science, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany

* Corresponding author contact information:
Matthias Konrad-Schmolke
University of Potsdam
Institute of Earth and Environmental Science
Karl-Liebknecht-Str. 24-25
14476 Potsdam
E-mail: mkonrad@geo.uni-potsdam.de
Tel: +49-331-977-5854
Fax: +49-331-977-5700
ABSTRACT

Quantitative geochemical modeling is today applied in a variety of geological environments from the petrogenesis of igneous rocks to radioactive waste disposal. In addition, the development of thermodynamic databases and computer programs to calculate equilibrium phase diagrams have greatly advanced our ability to model geodynamic processes. Combined with experimental data on elemental partitioning and isotopic fractionation, thermodynamic forward modeling unfolds enormous capacities that are far from exhausted.

In metamorphic petrology the combination of thermodynamic and trace element forward modeling can be used to study and to quantify processes at spatial scales from µm to km. The thermodynamic forward models utilize Gibbs energy minimization to quantify mineralogical changes along a reaction path of a chemically open fluid/rock system. These results are combined with mass balanced trace element calculations to determine the trace element distribution between rock and melt/fluid during the metamorphic evolution. Thus, effects of mineral reactions, fluid-rock interaction and element transport in metamorphic rocks on the trace element and isotopic composition of minerals, rocks and percolating fluids or melts can be predicted.

Here we illustrate the capacities of combined thermodynamic-geochemical modeling based on two examples relevant to mass transfer during metamorphism. The first example focuses on fluid-rock interaction in and around a blueschist-facies shear zone in felsic gneisses, where fluid-induced mineral reactions and their effects on boron (B) concentrations and isotopic compositions in white mica are modeled. In the second example, fluid release from a subducted slab, the associated transport of B as well as variations in B concentrations and isotopic compositions in liberated fluids and residual rocks are modeled. We compare the modeled results of both examples to geochemical data of natural minerals and rocks and demonstrate that the combination of thermodynamic and geochemical models enables quantification of metamorphic processes and insights into element cycling that would have been unattainable if only one model approach was chosen.
1. Introduction

In geosciences, field-based observations are fundamental for our interpretations of geological processes. Quantitative models, which should be based on these observations, are essential to predict the evolution of geological systems and the outcome of geological processes (Albarède, 1995). As many disciplines in geosciences are faced with the fact that their study target, such as processes in the deep Earth, is either completely inaccessible, or that spatial or temporal scales at which the processes of interest operate do not allow direct observation, numerical and analogue models have become an indispensable tool to study, quantify and predict processes in Earth and environmental sciences. The development of high resolution - high precision analytical techniques to determine chemical and isotopic compositions of rocks and minerals, an increasing number of experimental data and advances in computational resources enhances our ability to simulate Earth processes and to test the results of these models against field-based observations. As demonstrated by Goldschmidt (1954), physicochemical principles determine systematic compositional changes in rocks and minerals and are hence the key to understand geological processes. The combination of thermodynamic and geochemical forward modeling (e.g., Hebert et al., 2009; Kimura et al., 2009, 2010; Konrad-Schmolke et al., 2008b; Nagel et al., 2012) allows a more precise quantification of key geochemical parameters leading to an improved understanding of geodynamic mechanisms and enables to study and predict rates and kinematics of solid/liquid reactions.

1.1. Thermodynamic equilibrium forward modeling in geosciences

Predicting phase and chemical equilibria is extremely important in many industrial applications, such as gas distillation, cement production and the development of functional materials. Therefore, methods of calculation of phase diagrams (CALPHAD) have been successfully developed and constantly improved. Thermodynamic modeling is nowadays more frequently applied to geoscientific problems, although its application is far more complex than most approaches in material sciences. Challenges in geosciences arise from the fact that most geoscientific questions involve thermodynamic treatment of complex solid solution phases in multiphase systems, interaction of liquid and solid phases and consideration of open system behavior. The application of thermodynamic calculations to geoscientific problems became viable with the compilation of extensive datasets for thermodynamic standard state properties (e.g. Helgeson, 1978; Robie and Hemingway, 1995; Holland and Powell, 1998; Berman, 1988; Gottschalk, 1997), reliable equations of state for
geologically relevant phases and conditions (e.g., Kerrick and Jacobs, 1981; Berman, 1988, Stixrude and Lithgow-Bertelloni, 2005; Holland and Powell, 2011) and solid solution formulations for phases of geoscientific interest (e.g., Margules, 1895; van Laar, 1910; Holland and Blundy, 1984; Berman, 1990; Holland and Powell, 2003). Regarding the interpretation of thermodynamic calculations it is noteworthy that although many of the data incorporated in the available databases are based on experiments or have been numerically determined and are internally consistent, raw experimental data on standard state thermodynamic phase properties are still sparse and incomplete. The limited amount of experimental data together with an inappropriate use of thermodynamic variables (e.g., $\mu_{\text{H}_2\text{O}}$ (chemical potential of water) vs. $n_{\text{H}_2\text{O}}$ (amount of water)) can result in significant misinterpretations of modeled thermodynamic equilibria in geosciences (Essene 1989, Powell et al., 2005). Therefore, it is of utmost importance that the formulation of the problem to be solved using thermodynamic modeling complies with limitations induced by the uncertainties implicit in the thermodynamic data and that the thermodynamic variables used to extract information from such models are carefully chosen.

In general, two different thermodynamic calculation approaches can be used to determine thermodynamic equilibria ($\Delta G_R = 0$) among fluid and solid phase assemblages:

1) Solving the equilibrium constant (K)

$$0 = \Delta \mu_0 + RT \ln K$$

where $R = \text{gas constant (in J K}^{-1} \text{ mol}^{-1}), T = \text{temperature (in K)}$ and $\Delta \mu_0 = \sum_{i=1}^{n} \nu_i \mu_i^0 = \text{free energy change for the reaction for the species in the standard state with } \mu_i^0 = \text{standard state molar chemical potential of species } i \text{ and } \nu_i = \text{stoichiometric coefficient of species } i \text{ in the reaction. The equilibrium constant is defined as}$

$$K = \prod_{i=1}^{n} (a_i^0)$$

where $a_i = \text{activity of species } i$.

2) Global Gibbs energy minimization

$$\text{minimize } G = \sum_{i=1}^{n} n_i \mu_i$$
where \(n_i \) = molar amount of component \(i \) and \(\mu_i \) = molar chemical potential of the \(i^{th} \) component.

Both approaches require knowledge about the Gibbs free energy of pure phases and a mathematical formulation of the relation between composition and activity/chemical potential in solution phases. Consequently, they both rely on thermodynamic data sets, which contain the standard state thermodynamic parameters and equations of state (EOS) for minerals, fluids and gases together with solution model formulations. The approach of solving the equilibrium constant furthermore requires that the phases among which the thermodynamic equilibria are calculated are pre-defined. This approach is widely utilized in aquatic geochemistry because the equilibrium constants of many aqueous reactions can be readily obtained from experiments (see Oelkers et al., 2009, and references therein). Several commercial and open source computer programs, such as PHREEQC (Parkhurst and Appelo, 1999), SUPCRT92 (Johnson et al., 1992) and THERMOCALC (Powell and Holland, 1988), are available for this purpose.

In metamorphic petrology, element fractionation processes, e.g. fractional crystallization (e.g., Spear 1988; Marmo et al., 2002; Konrad-Schmolke et al., 2006; 2008a), water liberation (e.g., Hacker, 2008; Dragovic et al., 2012) and reactive fluid flow (e.g., Ferry and Gerdes 1998; Beinlich et al., 2010) require thermodynamic modeling of chemically open systems (e.g., Korzhinskii, 1965). In such open systems, coexisting phases cannot be predicted a priori – a prerequisite of the equilibrium constant approach – because they are a function of the pressure \((P) \), temperature \((T) \) and chemical \((X) \) evolution of the rock. Therefore, the approach of global Gibbs energy minimization is preferable as it allows the calculation of thermodynamically stable phase assemblages among all phases available in the database. The mathematical treatment of this approach involves (1) finding the phase assemblage with the lowest Gibbs energy among a large number of solid solution phases (so called global Gibbs energy minimum) and (2) finding the tangent plane that touches the G-X curves of all stable solid solution phases, which is prerequisite for finding the thermodynamically stable compositions of solution phases. For both aspects, different mathematical approaches are published (see Koukarri and Pajarre (2011) for a detailed review) and are implemented into a number of commercial and open source software packages, including MELTS (Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998), pMELTS (Ghiorso et al., 2002) PERPLE_X (Connolly, 2005), THERIAK/DOMINO (de Capitani and Brown, 1987) and GEM-Selekto (Kulik et al., 2004; 2013).
Several pioneering works in the 1980s (Spear, 1988; Spear and Menard, 1989; Spear and Selverstone, 1983; Connolly and Kerrick, 1987; de Capitani and Brown, 1987) established the use of Gibbs energy minimization in petrologic modeling. These studies successfully demonstrated modeling of different rock-forming processes utilizing Gibbs energy minimization and yielded new insight into metamorphism. In more recent publications, Gibbs energy minimization was used in a number of different contexts including precise correlations of the pressure-temperature evolution of metamorphic rocks with age determinations (e.g., Pollington and Baxter 2010), fluid-rock and melt-rock interaction (Nagel et al., 2012; Konrad-Schmolke et al., 2011a), deformation (Pearce and Wheeler 2010), fluid expulsion during metamorphic reactions in subduction zones (Dragovic et al., 2012; Connolly, 2005; Kerrick and Connolly, 2001; Gorman et al., 2008), element transport properties of metamorphic rocks (Skora et al., 2006; Konrad-Schmolke et al., 2008b), the prediction of compositional trends in arc melts (Hebert et al. 2009; Nagel et al., 2012) as well as quantification of reactive fluid flow during metamorphism (Beinlich et al., 2010).

1.2. Geochemical trace element modeling

Trace elements (elements that are present at concentrations of less than 0.1 wt.%) commonly substitute for major elements in rock-forming minerals. They have a negligible influence on the outcome of a particular process, but instead are passive recorders of the processes that the system has experienced (e.g., Blundy and Wood, 2003). The distinct geochemical behavior of trace elements, which can be described by mathematical models, makes them particularly useful tracers. Depending on the process, trace elements behave in different, but predictable ways, which allows us to determine which processes have operated in a certain situation or setting.

The low concentrations of trace elements cause them to be sufficiently diluted to follow simple relationships between composition and activity. For a wide range of trace element concentrations, Henry’s Law applies, stating that the activity of a trace element is directly proportional to its composition:

\[a_t^A = h_t^A X_t^A, \]

where \(a_t^A \) is the activity of the trace element in phase A, \(h_t^A \) is Henry’s Law constant (a proportionality constant or activity coefficient), and \(X_t^A \) is the composition of phase A. Commonly, the equilibrium distribution of trace elements between two phases is described by a distribution coefficient (or partition coefficient) (see White, 2013, for details). In
geochemical applications, the Nernst partition coefficient (D) is used, which defines D as the ratio of the concentrations (c) of an element i between two phases A and B:

\[D_{i}^{A/B} = \frac{c_{i}^{A}}{c_{i}^{B}} \]

Although D values are known to depend on temperature, pressure, and the compositions of the phases involved, P and T independent distribution coefficients are commonly used in magmatic and metamorphic petrology. This simplification is partly due to the limited pressure dependence of many partition coefficients under lithospheric conditions (Taura et al. 1998) and partly due to the lack of experimental data.

Quantitative models using trace elements were first applied in studies about the petrogenesis of igneous rocks. Gast (1968) and Shaw (1970) developed models for partial melting and fractional crystallization, in which they used concentrations of trace elements in liquid and solid phases in relation to the degree of partial melting of a rock and the degree of fractional crystallization, respectively. Later, assimilation of country rocks, combined assimilation – fractional crystallization processes, magma recharge, source rock heterogeneities and melt-rock reactions were all investigated using trace elements (O’Hara, 1977; De Paolo, 1981; Kelemen et al., 1992; McKenzie and O’Nions, 1991; Weaver, 1991). In recent years, trace element models are combined with thermodynamic constraints to simulate the evolution of magmatic systems that simultaneously undergo a combination of fractional crystallization, recharge and assimilation processes (EC-\(\chi\)AFC; Bohrson and Spera, 2001, 2007).

Trace elements are also important petrogenetic tracers for the genesis of metamorphic rocks. Whole rock trace element concentrations are frequently used for the determination of protolith compositions and pre-metamorphic alteration processes (Pearce 2008; Altenberger et al., 2008; Bebout, 2007; Becker et al., 2000; Halama et al., 2013; John et al., 2010; van der Straaten et al., 2012) and the quantification of fluid infiltration and element transport (Nabelek 1987; Ague, 2003, 2011; John et al., 2004; Beinlich et al., 2010). Many experimental studies have focused on the partitioning of trace elements between solid and liquid phases during subduction (Kessel et al., 2005; Ayers and Eggler, 1995; Brenan et al., 1995), and these data were applied in numerous investigations about fluid–rock interaction during metamorphism (Bau, 1991; Brunsmann et al., 2001; Breeding et al., 2004; Beinlich et al., 2010). In metamorphic rocks, several phases of metamorphism may be recorded, and partial overprinting during metasomatism and/or retrogression may cause additional
complexities. Therefore, *in situ* measurements that help to trace specific reactions and discern different episodes of equilibration are often crucial.

Significant advances in modeling were achieved by the combination of thermodynamically constrained equilibrium assemblage calculations with trace element fractionation models between fluid/melt and residual phases. With this approach, specific features in the trace element geochemistry of subduction-related rocks were successfully reproduced. Nagel et al. (2012) combined the calculation of equilibrium assemblages in partially molten, mafic rocks with subsequent modeling of trace element fractionation between melt and residual phases to explain the formation of the Earth’s oldest continental crust by melting arc tholeiites within a tectonically thickened mafic island-arc crust (Fig. 1a). Hebert et al. (2009) investigated slab fluid source lithologies and melt transport regimes in subduction zones using the GyPSM-S (Geodynamic and Petrological Synthesis Model for Subduction) modeling scheme, which couples a petrological with a thermal model to describe processes occurring in the supra-subduction zone (SSZ) mantle wedge, supplemented with models for trace element partitioning in the fluid phase and melt transport regimes. They interpreted geochemical characteristics of across-arc and along-arc lavas in relation to distinct shallow and deep slab fluid sources and found that melt migration through the mantle wedge preserves spatial distinctions among melts initiated in different areas of the wedge (Hebert et al., 2009).

Focusing on the distribution of fluids in the mantle adjacent to a subducting slab, Hebert and Montési (2013) modeled fluid transport and mantle hydration related to deep dehydration reactions in subducted serpentinized mantle and effects on hydration of the transition zone. Kimura et al. (2009) developed the Arc Basalt Simulator (ABS) modeling scheme to predict the composition of primitive arc magmas (Fig. 1b). This simulation scheme initially included slab dehydration and fluid-fluxed mantle melting and was subsequently modified to incorporate slab melting and melt-fluxed mantle melting (Kimura et al., 2010) and, most recently, separate P-T paths for distinct slab layers, yielding more liquid-solid interaction within the 1-D vertical column (Kimura et al., 2014). Application of the ABS models produced successful predictions of incompatible element and Sr-Nd-Pb isotopic compositions of distinct primitive magmas from the volcanic front and the rear-arc of the Izu arc (Kimura et al., 2010).

1.3. **Boron and boron stable isotopes as tracers of fluid-rock interaction**

One of the key aspects in metamorphic petrology is to trace and quantify liquid phases percolating through solid rocks. Liquid phases, such as aqueous fluids or melts, are the major
transport agents in the solid Earth and thus quantification of the fluxes of liquid phases enables tracing of the mass transfer in the solid Earth. In contrast to a melt phase, which might crystallize *in situ* and can then be directly investigated, fluids can only be passively trapped as inclusions in solid phases and in most cases have left the rock at the time of investigation. Thus, indirect geochemical evidence for the presence of a fluid interacting with the host rock must be considered. Ideally, such indirect geochemical proxies for fluid-rock interaction are among the fluid mobile elements (FME), have quick equilibration times and small equilibration volumes. Subsequent to fluid-rock interaction, the geochemical proxy must be stable and not prone to later, e.g. diffusional, re-equilibration. Furthermore, the proxy must be present in major phases in measurable quantities. Elements often used for this purpose are Li, B, N, Cl, As, Rb, Sb, Cs, Ba as well as Pb and U (see Ryan and Chauvel 2013).

Boron is particularly useful for the investigation of fluid-rock interaction processes and dehydration because it is present in measurable quantities in several major mineral phases (white mica, tourmaline, amphibole, serpentine) as well as in hydrous fluids and its concentration is typically low enough to make it sensitive to fast equilibration at small fluid amounts. In most rock-forming minerals, including white mica, B substitutes for silica and occupies the tetrahedral position (Sanchez-Valle et al., 2005). If B diffuses similarly slow as Si, B concentrations are difficult to exchange after crystallization (Hervig et al., 2002), a prerequisite to preserve relevant information over geologic time scales. Furthermore, information from boron as fluid-mobile trace element can be combined with the isotopic information from B stable isotopes (e.g., Simon et al., 2006).

The observation of variations in the atomic weight of boron in minerals, made by Briscoe and Robinson (1925), was crucial for the recognition that physiochemical processes can cause isotopic fractionation of light elements in natural substances. It was therefore proposed that geologically relevant processes, including melting, crystallization, solution and volatilization, would cause isotopic variations in nature (Briscoe and Robinson, 1925), leading the way for the widespread application of stable isotopes as tracers (Sharp, 2007). The value of the various stable isotope systems is based on the fact that distinct stable isotope signatures occur in different reservoirs, so that they can be used to trace the origin of rocks and fluids.

Boron has two stable isotopes, 10B and 11B, with relative abundances of 19.8% and 80.2%, respectively. The large B isotopic variation in natural substances of almost 100‰ (Fig. 2; Deyhle and Kopf, 2005) is dominantly due to differences in coordination between tetrahedral
B(OH)$_4$ and trigonal B(OH)$_3$. Moreover, the B isotopic composition is influenced by temperature-dependent equilibrium fractionation between solid and fluid phases (Peacock and Hervig 1999; Hervig et al., 2002; Wunder et al., 2005) and it is also sensitive to changes in the pH value (Deyhle and Kopf, 2005). Boron preferentially partitions into the fluid phase (Brenan et al., 1998) with a concomitant enrichment of the heavy isotope 11B relative to 10B. The most striking example of coupled trends of elemental and isotopic variations occurs in arc lavas, where systematic across-arc trends of decreasing and isotopically lighter B with increasing slab depths (Fig. 2; Ishikawa and Nakamura, 1994; Ishikawa et al., 2001; Moriguti et al., 2004) are attributed to contributions from a slab-derived agent that successively reflects increasing degrees of slab dehydration and decreasing slab-to-arc element transfer (Bebout et al., 1999; Rosner et al., 2003; Marschall et al., 2007). In addition, several studies have emphasized the role of serpentinized mantle rocks, both in the supra-subduction zone wedge and in the subducting slab mantle, for boron cycling in subduction zones (Tonarini et al., 2007, 2011; Benton et al., 2001; Hattori and Guillot, 2003; Savov et al., 2007). Evidence for the sensitivity of the B system for fluid-rock interaction is provided by zoning patterns in various metamorphic minerals (white mica, amphibole, tourmaline), which retain information about the compositional evolution of metasomatic fluids through the metamorphic history (Bebout and Nakamura, 2003; Marschall et al., 2009; Konrad-Schmolke et al., 2011b; Halama et al., 2014).

In the following sections we will show two examples of combined thermodynamic-geochemical models that focus on the mass transfer in subduction zones at different spatial scales (Fig. 3). The first model simulates fluid-rock interaction at grain-scale and investigates the effect of fluid percolation on B concentrations and B isotopic compositions in partially overprinted phengites. In the second example, fluid release from a subducted slab, the associated transport of B and variations in B concentrations and isotopic compositions in liberated fluids and residual rocks are modeled. We compare the results of both examples with observations in natural minerals and rocks in order to quantify fluid fluxes and element cycling.

2. Example 1: Boron and boron isotopes in white mica during high-pressure fluid-rock interaction

2.1. Observations in natural samples

Fluid-induced metasomatic overprinting is a common feature in many metamorphic terranes
Partial re-equilibration of metamorphic rocks, immensely important to trace the rocks’ metamorphic evolution, results in whole rock geochemical and isotopic variations and in compositional changes in individual metamorphic minerals (Spear and Selverstone 1983; Thompson and England 1984; Yardley et al., 1991; Kohn 2003; Habler et al., 2007; Konrad-Schmolke et al., 2011a,b; Pearce and Wheeler, 2010; Goncalves et al., 2012). Since white mica is ubiquitous in metamorphic rocks of both igneous and sedimentary origin and stable over a wide P-T range, especially in high pressure rocks (Domanik and Holloway, 1996; Hermann and Spandler, 2008), it is well suited to investigate fluid-rock interaction processes during metamorphism. Chemical variations in white mica depend on P-T conditions, bulk rock composition and syn-kinematic mass transfer and fluid conditions (Velde, 1965; Massonne and Schreyer, 1987; Guidotti et al., 1994; Goncalves et al., 2012). Diffusion-controlled exchange reactions in white mica have relatively high closure temperatures below which major element exchange is effectively impossible, so that preserved chemical variations predominantly reflect deformation and recrystallization controlled equilibria (Dempster, 1992). Potassic white mica is also amenable to age dating using both the \(^{40}\text{Ar}/^{39}\text{Ar}\) and Rb-Sr methods and hence provides a means to directly link age information to the metamorphic evolution of a rock (Di Vincenzo et al., 2001; Glodny et al., 2002; Bröcker et al., 2013; Halama et al., 2014; Warren et al., 2011, 2012). White mica is also an important carrier of fluid-mobile trace elements including B, lithium (Li) and the large ion lithophile elements (LILE; K, Cs, Rb, Ba, Sr; Bebout et al., 1999, 2007, 2013; Konrad-Schmolke et al. 2011b; Hermann and Rubatto, 2009). Boron is concentrated in white mica (phengite and paragonite), compared to all other major phases, except tourmaline (Domanik et al., 1993; Marschall et al., 2006). Hence, white mica dominates the B budget in most tourmaline-free rocks and its B isotopic composition can be considered as representative of the bulk rock (Peacock and Hervig, 1999). During subduction, the presence of white mica critically determines retention and release of B as well as the B isotopic composition of released fluids (Marschall et al., 2007). Therefore, B elemental and isotopic changes in white mica are ideally suited to trace compositional changes due to fluid-mediated metasomatism. However, B isotope data in white mica are still relatively rare (Peacock and Hervig, 1999; Pabst et al., 2012; Angiboust et al., 2014) as many B isotope studies concentrated on tourmaline (Bebout and Nakamura, 2003; Trumbull et al., 2008, 2009; Marschall et al., 2009).

In this example, we present a detailed study of high-pressure metamorphosed felsic rocks of the Western Alpine Sesia Zone (SZ) that were exhumed from mantle depths on top of a
dehydration of subducted oceanic plate where they directly interacted with percolating fluids at blueschist-facies conditions. A sampling profile across a deformation gradient around a major blueschist-facies shear zone showed several remarkable compositional features in texturally different phengite grains and domains (Konrad-Schmolke et al., 2011a,b, Halama et al., 2014).

2.1.1. Phengite chemistry in the Sesia Zone samples

Fluid infiltration in weakly deformed rocks modified primary phengite (3.3 - 3.5 Si p.f.u., \(X_{Mg} = 0.6 - 0.7\)) compositionally along fluid pathways (Fig. 4a and b). Fluid-induced retrograde major element equilibration of phengite involves a major decrease in \(X_{Mg}\) and is visible in high contrast BSE images, which show darker-colored cores surrounded by brighter zones that are concentrated at the tips and grain boundaries, around inclusions and in deformed parts (Fig. 4a). The BSE images show one, in some places two different replacement zones as well as areas with diffuse transitions, but oscillatory zoning is missing.

Phengite cores in weakly deformed samples have variable \(\delta^{11}B\) values (-18 to -10‰) that were interpreted to reflect the lack of km scale B homogenization during HP crystallization (Fig. 4c). Corresponding overprinted phengite rims have lower B abundances but overlapping \(\delta^{11}B\) values (-15 to -9‰), thought to reflect predominantly internal redistribution of B and internal buffering of the B isotopic compositions during recrystallization of the rims (Halama et al., 2014). In contrast, fine-grained mylonitic phengites are compositionally homogeneous in their major and trace element concentrations. \(X_{Mg}\) and Si p.f.u. in the syn-kinematic phengites correspond to the values observed in the overprinted phengite rims of the weakly deformed samples. Boron is almost completely removed in the mylonitic phengites (1-10 \(\mu\)g/g). The boron isotopic compositions in the mylonitic phengites are significantly heavier than in those from the weakly deformed samples, indicating an external control by a high-\(\delta^{11}B\) fluid (\(\delta^{11}B = +7\pm4‰\)). The compositional trend leads from relict cores via overprinted rims towards the mylonitic phengites (Fig. 4c). Based on estimates of the time-integrated fluid fluxes, which are more than one order of magnitude higher in the mylonites (Konrad-Schmolke et al. 2011b), the B removal was related to fluid-induced phengite recrystallization.

The sample profile, with presumably unmodified peak P-T phengite cores in weakly deformed samples, a partial metasomatic overprint represented by the phengite rims, and a strong deformation coupled to intense fluid-rock interaction in the mylonitic phengite provide the conceptual basis for fluid-rock interaction modeling along a distinct P-T path (Fig. 5).
particular, we focus on the apparent paradox of lower B contents at similar δ^{11}B values in the overprinted areas. Moreover, we want to evaluate to which degree the accurate determination of the two parameters [B] and δ^{11}B allows a quantification of fluid amounts that have interacted with the rock.

2.2. Thermodynamic-geochemical modeling of B concentrations and isotopic compositions in phengite

The boundary conditions for the thermodynamic model that has been performed with the THERIAK algorithm (de Capitani and Brown 1987) in the NCKFMASH chemical system comprise the following assumptions: Along the prograde P-T path, the samples underwent fractional garnet crystallization, indicated by large, compositionally zoned garnet porphyroblasts in the natural samples, and water fractionation due to devolatilization reactions (Konrad-Schmolke et al., 2011a). Thus, calculation of the effective bulk rock composition (EBC) at the start of the retrograde P-T trajectory must consider a prograde segment accounting for the element fractionation processes. Along the retrograde P-T path, from 2.0 GPa and 575°C to 1.1 GPa and 500°C (Fig. 5), a fluid influx event occurs at about 1.35 GPa and 550°C, which causes water re-saturation in the affected areas of our samples.

The mineralogical evolution of the samples in the P-T-X-space can be displayed with two compositionally constrained P-T equilibrium assemblage diagrams (P-T pseudosections) (Fig. 5a) and a P-X diagram (Fig. 5b). Fractional garnet crystallization and water fractionation along the prograde P-T path continuously modified the EBC. At peak conditions (left diagrams in Fig. 5a), the rock is water-saturated and becomes water under-saturated along the first segment of the retrograde P-T trajectory. The diagram calculated for the EBC at peak conditions shows that there is no significant change in the phase assemblage (pg+gln+cpx+phng+qtz) along the retrograde path until fluid influx at 1.35 GPa and 550°C. The fluid influx causes water re-saturation of the EBC and changing phase relations (right diagrams in Fig. 5a) that are then applicable for the second part of the retrograde P-T trajectory. The P-H$_2$O diagram (Fig. 5b) highlights the compositional plane in the P-T-X space together with the retrograde P-X trajectory of our samples (red arrow). Below the water saturation line (bold blue) X_{Mg} in phengite strongly depends on the H$_2$O content indicated by the sub-vertical X_{Mg} isopleths. The compositional correlation between H$_2$O content and X_{Mg} in phengite is reflected in the fluid-induced overprinting zones in the mica grains of the natural samples (Fig. 4a). The modeled phase relations and phengite compositions along the retrograde P-T trajectory demonstrate that the fluid influx causes drastic changes in both
modal mineralogy and phase chemistry (Fig. 6).

Phengite amount decreases by about 10 wt.%, whereas the abundances of glaucophane and paragonite increase. Omphacite is no longer stable and epidote joins the stable phase assemblage. In phengite, the model indicates a slight decrease in Si_T due to the fluid influx, unrelated to the continuous pressure decrease (Fig. 6a). The negative correlation between decreasing celadonite (X_{Cel}) and increasing ferroceladonite (X_{Fcel}) components reflects the sudden increase in X_{Fe} in the overprinted zones. These modal and chemical phase changes reflect the blueschist-facies overprint as observed in the shear zone (Konrad-Schmolke et al., 2011a).

Boron concentrations [B] and isotopic compositions ($\delta^{11}\text{B}$) of phengite (phng) are modeled along the retrograde P-T path. Boron distribution among fluid and stable mineral phases is calculated using partitioning data of Brenan et al. (1998) and Marschall et al. (2007). Specifically, the $D_{\text{fluid-phng}}$ value was derived from $D_{\text{cpx-fluid}}$ (Brenan et al., 1998) and $D_{\text{cpx-phng}}$ (Marschall et al., 2007). Experimentally determined B isotope fractionation data were taken from Wunder et al. (2005). Initial values for [B] and $\delta^{11}\text{B}$ in the host rock are chosen to reflect the composition of the phengite cores, whereas [B] and $\delta^{11}\text{B}$ in the infiltrating fluid (27 µg/g and +7‰) were calculated assuming chemical equilibrium with the mylonites in the shear zone. A detailed modeling description together with a software package including the Gibbs energy minimization algorithm THERIAK (de Capitani and Brown, 1987) together with a MatLab® script for B and $\delta^{11}\text{B}$ calculations are given in the electronic supplementary material.

2.3. Geochemical model results

The modeling of [B] and $\delta^{11}\text{B}$ in phengite relates the amount of water that percolated through the rock to the structural and textural characteristics of phengite in the natural samples (Fig. 7). High-pressure conditions at $P > 1.35$ GPa – before the fluid influx – are represented by relict, unmodified phengite cores. Predominantly internal B redistribution and low amounts of water influx are mirrored in the overprinted rims, whereas high amounts of water reflect conditions in the shear zone. The model shows that with increasing water flux, [B] in phengite decreases (Fig. 7a) due to the preferential partitioning of B into the fluid. The redistribution of B is quite efficient even at low amounts of water influx, so that a constant [B] value is reached after only 0.5 wt.% accumulated water influx. The changes in $\delta^{11}\text{B}$, caused by the preferential partitioning of ^{11}B into the fluid, are more sluggish (Fig. 7b). At very low water
fluxes the isotopic composition of white mica is even driven towards slightly lower δ^{11}B values, a trend that is reversed after \sim0.1 wt% water influx. About 1 wt.% H$_2$O is required before a constant δ^{11}B value is reached in the model.

When distinct amounts of water influx (0, 0.09 and 1.5 wt.%) for the given P-T path are compared, the rapid chemical and isotopic changes of the predicted B equilibrium concentrations and isotope compositions become even more apparent (Fig. 7c,d). If no water is added, representing a completely internal redistribution of boron, the model predicts a small increase of [B] in phengite associated with unchanged δ^{11}B compared to the pre-influx values.

Low water influx (0.09 wt.%) causes a 20% decrease in [B], consistent with B concentrations measured in the overprinted rims. The modeled δ^{11}B in phengite resulting from fluid-rock interaction at these low fluid fluxes is much less affected and changes by less than 1‰. The modeled B isotopic variation is within analytical uncertainty and natural inhomogeneity between different samples. Indeed, most samples do not show B isotopic differences between relict cores and rims, albeit a tendency towards higher δ^{11}B values is recognizable for some.

High fluid influx (1.5 wt.% accumulated water flux) results in an 80% decrease in [B], whereas δ^{11}B increases toward the equilibrium value determined by the external fluid. Again, both features agree well with the field-based observations in the SZ.

The interplay of the two parameters [B] and δ^{11}B during progressive fluid influx allows a quantification of the amounts of fluid absorbed by the rocks. The evolution of [B] and δ^{11}B in the percolating fluid are decoupled at low amounts of H$_2$O. Whereas removal of B from the interacting host rock leads to a continuous decrease in [B] immediately after infiltration of the first increment of fluid, δ^{11}B initially slightly decreases. With increasing fluid amount, the trend in δ^{11}B reverses. In our example, the amount of water in the weakly deformed samples is limited to a maximum of \sim0.25 wt.%. In the mylonites, at least 0.75 wt.% water must have been percolating through the rock to explain the changes in both [B] and δ^{11}B. One of these parameters alone would not suffice to quantify fluid amounts.

Decreasing B concentrations in minerals and rocks are commonly attributed to dehydration reactions as evident in figures 2 and 8 whereas in the chosen example decreasing B concentrations in phengite are the result of the fluid infiltration and fluid-rock interaction leading to a B redistribution and precipitation of phengite material with lower B concentration. In contrast to dehydration that is associated with decreasing δ^{11}B values, fluid-rock interaction in the investigated samples causes an increase in δ^{11}B in the affected phengite grains, which demonstrates that only the combination of the two parameters [B] and δ^{11}B
allows distinction between the two contrasting processes.

It is notable that in our samples overprinted phengite areas are visible in BSE images due to their significantly higher Fe concentrations and B measurements can be correlated with these zones. To evaluate whether the B compositional and isotopic zoning in the investigated phengites fully correlates with the major element zonation, qualitative mappings of single grains are necessary. Such mappings of trace element compositional variations in metamorphic minerals are crucial to increase our knowledge about the fluid-rock interaction and associated processes in metamorphic phases (e.g., Papst et al., 2011; Valle et al., 2011).

At present, relatively large analytical uncertainties for B isotope compositions measured in natural phengite (2s uncertainty = 1-5 ‰) make it difficult to detect intra-grain variations in samples with low B concentrations and small grain sizes (Aggarwal and Palmer, 1995; Jacob, 2006; Rosner et al., 2008), but in contrast to B-rich phases, such as tourmaline, white mica has the advantage that it is a rock-forming phase in many metamorphic rocks and its compositional variations can easily linked with its metamorphic evolution (e.g., Massonne and Schreyer 1987). Our example shows the capacity of B concentrations and the isotopic composition of B in phengite to record fluid influx and fluid-rock interaction in metamorphic rocks (e.g., Angiboust et al., 2014). Qualitatively, the results of this example demonstrate that the effects of fluid-rock interaction during fluid percolation on the trace element transport may be profound and need to be considered in large-scale subduction zone models, which will be delineated below.

3. Example 2: Boron release in subduction zones

3.1. Observations in natural samples

Subduction of hydrated oceanic lithosphere is the main process that allows element transfer from the Earth’s surface to the deeper mantle. Devolatilization of the subducted slab leads to partitioning of elements into the upward migrating fluid and subducting solid phases. Whereas the former are recycled into the upper plate or the atmosphere, the latter are deeply subducted and assimilated into the deep mantle (Elliott et al., 2004; Peacock and Hervig, 1999; Hofmann, 1997; Hacker, 2008). Knowledge about and quantification of this element partitioning is crucial for the understanding of global scale element distribution between crust, mantle and atmosphere (e.g., Connolly, 2005; Kerrick and Connolly, 2001; Spandler and Pirard 2013). As we have no direct access to the subducting rocks, elemental and isotopic signatures in arc volcanic rocks are interpreted in terms of processes occurring in the
downgoing slab (Pearce and Peate, 1995), although the extent to which slab contributions control geochemical characteristics of arc magmas is disputed (Elliott, 2003). However, there are several examples where across-arc geochemical variations in arc lavas appear to reflect changes in the subducting slab as a function of depth (Fig. 2), which in turn control slab-to-arc mass transfer (Ishikawa and Nakamura, 1994; Ryan et al., 1995, 1996; Moriguti and Nakamura, 1998). Geochemical reservoirs in the slab that potentially leave their imprints in arc volcanic signatures include all lithological layers of the subducting lithosphere: sediments, igneous oceanic crust and the hydrated slab mantle (Ryan et al., 1995; Plank and Langmuir, 1993; Morris et al., 1990; John et al., 2004; Herms et al., 2012). If seawater is able to infiltrate the upper oceanic mantle (Ranero et al., 2003; Ranero and Sallarès, 2004; Garth and Rietbrock, 2014), serpentinites formed by this process can theoretically absorb up to 13 wt% of water and may therefore be effective carriers of water (Schmidt and Poli 1998; Rüpke et al., 2004; Hacker, 2008) and certain fluid-mobile elements (FME) to sub-arc depths (Ulmer and Trommsdorff, 1995; Scambelluri et al., 2001; Hattori and Guillot, 2003). Additionally, the supra subduction zone (SSZ) wedge mantle, which is hydrated by fluids liberated from the subducted slab, may also be an important reservoir of water and trace elements delivered to greater depth (Tatsumi, 1986; Hyndman and Peacock, 2003; Straub and Layne, 2002; Hattori and Guillot, 2003; Kawamoto et al., 2013), although both water and FME are originally derived from the slab itself. If SSZ mantle is dragged down along the slab-wedge interface towards sub-arc depth (Savov et al., 2005, 2007), and if temperatures remain cold enough so that relevant dehydration reactions are delayed until these depths are reached (Grove et al., 2009; Till et al., 2012), geochemical signals from SSZ mantle-derived fluids may be incorporated into arc melt sources. A thermodynamic-geochemical model reflecting fluid liberation and reactive fluid flow (Zack and John 2007) in subduction zones must incorporate fluid production and fluid-rock interaction in all of the above-mentioned reservoirs.

Regarding the use of B as tracer for subduction zone processes, Ryan and Langmuir (1993) first noted that B is a useful proxy in across-arc studies by observing systematically lower B contents in arcs where volcanoes sample deeper portions of the slab. As B concentrations in dry mantle rocks are extremely low (<1 µg/g), B is flushed through the SSZ mantle wedge without significant modification of the B slab signal during fluid ascent (Ryan and Langmuir, 1993). Compared to the mantle wedge, B is concentrated in several slab lithologies, including subducted sediment (Ishikawa and Nakamura, 1993), altered oceanic crust (AOC) (Spivack and Edmond, 1987; Yamaoka et al., 2012) and serpentinized mantle rocks (Benton et al., 2001; Boschi et al., 2008; Vils et al., 2009; Scambelluri et al. 2004). Arc lavas are generally
enriched in B, as shown by elevated B/Nb and B/Be ratios compared to oceanic basalts (Fig. 2a). The B/Nb ratio is used as tracer of B enrichment because B/Nb is considered as unfractionated during partial melting based on similarity in mineral-melt partition coefficients (Brenan et al., 1998). Arc lavas are also relatively enriched in \(^{11}\)B (Fig. 2b), suggesting fluid-mediated slab-to-arc B transfer via a B-rich, high-\(\delta^{11}\)B slab fluid (Scambelluri and Tonarini, 2012). In many cases, the B isotopic compositions systematically vary with B enrichment as higher B/Nb ratios are coupled to higher \(\delta^{11}\)B values (Fig. 2a; Spandler and Pirard, 2013). Consequently, across-arc trends with increasingly lower B concentrations and isotopically lighter compositions with increasing slab-surface depths, as observed in many subduction zones (Fig. 8b; Ishikawa and Nakamura, 1994; Ishikawa et al., 2001; Ishikawa and Tera, 1999; Rosner et al., 2003), are interpreted to directly reflect increasing degrees of slab dehydration and decreasing slab-to-arc element transfer. However, several subduction zones show unusually high \(\delta^{11}\)B and B/Nb values or reversals in the across-arc trends of these values (Moriguti et al., 2004; Ishikawa et al., 2001; Tonarini et al., 2001), but the reasons for these exceptions are still debated. Among the most interesting of the deviating examples are the South Sandwich Islands (SSI) arc and the Kamchatka subduction zone. In the SSI arc, anomalously high \(\delta^{11}\)B and B/Nb are observed throughout the entire volcanic arc and interpreted to reflect dehydration of the SSZ wedge mantle (Tonarini et al., 2011). Across the Kamchatka peninsula, arc volcanic rocks from three successive volcanic chains yield a complex \(\delta^{11}\)B and B/Nb pattern (Fig. 2; Ishikawa et al., 2001), the reason for this complexity being unclear so far, but possibly related to dehydration of subducted slab mantle. Slab mantle dehydration is difficult to detect in arc volcanic rocks by geochemical means because ultramafic rocks are typically poor in many trace elements. Arsenic, antimony and boron are among the few elements characteristic for serpentinites and geochemical trends of these elements (Spandler and Pirard, 2013) as well as the isotopic composition of boron in arc lavas are interpreted to reflect serpentinite dehydration (Tonarini et al., 2011). However, geochemical models alone cannot discriminate between dehydration of upper- and lower-plate serpentinites. If and to which degree slab mantle dehydration influences \(\delta^{11}\)B and B/Nb in across-arc profiles can be tested with a combined thermodynamic-geochemical model, which utilizes boron and its isotopic composition to model slab fluid release and fluid rock interaction in the downgoing slab and the mantle wedge.

3.2. Modeling B concentrations and isotopic compositions in a subduction zone

Marschall et al. (2007) modeled B concentrations in subducting rocks and released fluids
during subduction by combining the B distribution among the minerals present with
temperature-dependent fractionation of B isotopes, corroborating the proposed continuous
decrease in B and δ^{11}B in both residual rocks and released fluids (Fig. 8). These one-
dimensional models predict that white mica plays a crucial role in the B geochemical cycling.
The more white mica is present in the rock, the more B is retained in the slab down to subarc
depths and beyond, and the more positive are the δ^{11}B values of the released fluids (Marschall
et al., 2007). Based on this pioneering work, our models additionally incorporate a
sedimentary layer, a layer of oceanic mantle in the subducting slab as well as a SSZ mantle
wedge layer (Fig. 9a), thus expanding the model to a second dimension (cf. Connolly, 2005;
Rüpke et al., 2006). Moreover, interaction between the liberated water and the wall rock
during the ascent of the fluid phase is taken into account because fluid-rock interaction within
the slab, at the slab-wedge interface (Marschall et al., 2006) and in the overlying mantle
wedge can lead to significant modifications of both percolating fluid and the affected wall
rock with respect to [B] and δ^{11}B. In our model, a thermal subduction zone pattern (Fig. 9a) of
the Kamchatka subduction zone derived from finite element thermomechanical modeling
(Manea and Manea, 2007) is used as pressure-temperature input for a Gibbs energy
minimization algorithm (PERPLE_X; Connolly 2005) that simulates the passing of a vertical
rock column within the subducted slab through the steady state thermal pattern. The thermal
pattern is modeled with a finite element grid extending from 25 km seaward of the
Kamchatkan trench up to 600 km landward of it. The numerical scheme solves a 2D Navier-
Stokes equation and a 2D steady state heat transfer equation. Shape and dip of the subducting
plate beneath the active arc are constrained by the earthquake hypocenter distribution (see
Manea and Manea 2007 for further details). Phase relations within the rock column that
consists of a SSZ mantle wedge layer (10 km; Primitive Upper Mantle from Workman and
Hart, 2005), a sediment pile (625 m; GLOSS from Plank and Langmuir, 1998), igneous
basaltic crust (6.4 km; N-MORB from Workman and Hart, 2005) and a variably hydrated slab
mantle (18.5 km; Depleted Mantle from Workman and Hart, 2005) are calculated with a
resolution of 250 x 250m. A more detailed description of the model and input parameters
together with a MatLab® script can be found in the electronic supplement. Water liberated by
dehydration reactions is transported vertically upward, equilibrating at every calculated
increment within the column, thus reflecting a high ratio of fluid/slab migration velocity. The
modeled phase relations at every calculated increment are used for a coefficient-based mass-
balanced B distribution (Brenan et al., 1998) and a temperature-dependent fluid-solid B
isotope fractionation (Fig. 9b; Wunder et al., 2005). The model simulates fluid release, fluid
migration, fluid-rock interaction and boron transport in a subducted slab and the overlying mantle wedge. Comparison of modeled and observed B concentrations and isotopic patterns help to constrain initial hydration of the slab and the dehydration behavior of wedge mantle and slab during subduction.

3.3. Model results

The dehydration model of the subduction zone shows that water release from the slab is controlled by thermally induced breakdown of the hydrous minerals brucite, antigorite, chlorite and lawsonite (Figs. 10 and 11). In case of a dry slab mantle dehydration occurs up to 250 km slab surface depth and is characterized by a continuous crustal signal and superimposed dehydration spikes resulting from discontinuous wedge mantle and slab crust dehydration (Fig. 11a). Breakdown of brucite and antigorite with minor contributions from chlorite and amphibole in the SSZ wedge mantle dominates water release in the fore-arc region. In the sub-arc region, water is delivered by continuous chlorite dehydration from the crust and the chlorite-out reaction in the SSZ mantle wedge that causes a characteristic dehydration peak at ~130 km slab surface depth. As predicted by the models of Marschall et al. (2007), continuous dehydration of the slab leads to a drastic decrease of the B concentrations (Fig. 11b) as well as to decreasing δ^{11}B values (Fig. 11c) in the residual rocks. However, depending on the depth within the slab crust the B concentrations in different rocks from the same layer can have significantly different values and a concentration gradient within the slab is maintained up to 200 km slab surface depth. This circumstance is the result of the interplay between the predominantly temperature-controlled dehydration pattern that is skewed relative to the surfaces of the lithological layers and the leaching effect resulting from fluid percolation within the slab. The effect of fluid-rock interaction on the subducted rocks is also clearly visible in the δ^{11}B values at different positions within the slab. Differences in the δ^{11}B values between the slab surface and in the SSZ mantle wedge subsequent to fluid-rock interaction can be as large as 10‰ in shallower regions and are about 5‰ at greater slab surface depths. These results show the need for two or three-dimensional models regarding the prediction of B concentrations and δ^{11}B values in subduction-related fluids and rocks.

Utilizing the same model setup, the effect on [B] and δ^{11}B values in the fluids released by slab mantle dehydration can be studied. In contrast to the preceding model, the slab mantle is now initially hydrated to a depth of 15 km perpendicular to the slab mantle surface. This is the maximum depth to which hydrous phases are thermodynamically stable at the beginning of the model run. The pseudosection (Fig. 10b) shows that chlorite and serpentine are the stable
hydrous phases in the slab mantle up to 175 km slab surface depth. Depending on the thermal
pattern within the slab there is an overlap of the stability fields of antigorite and phase A,

enabling the transfer of H₂O into the deeper mantle beyond sub-arc depths (cf. Hacker, 2008).

As there is no water release from the slab mantle at slab surface depths less than 175 km, the
dehydration pattern of the hydrated slab mantle up to this depth is the same as in the dry slab
mantle case (Fig. 12a). Water released by chlorite breakdown in the slab mantle is directly
transferred into serpentine at slab depth of about 150 km. Subsequently, the antigorite
breakdown reaction is the key factor regarding water release from the slab mantle (Fig. 12a).
The antigorite-out reaction starts at the bottom of the hydrated slab mantle part at ~130 km
slab surface depth. The liberated water migrates into the water-undersaturated overlying part
of the slab mantle, where it is resorbed and dragged down until the thermal stability limit of
antigorite is reached at ~175 km slab surface depth. The model shows that large amounts of
water are liberated at the terminal antigorite-out reaction, causing a massive fluid flux into the
overlying slab crust and wedge mantle. This dehydration burst is responsible for the second,
most prominent peak superimposed on the crustal dehydration pattern (Fig. 12a). Beyond the
antigorite-out reaction in the slab mantle, minor water release continues by lawsonite
breakdown in the crustal part of the slab. Phengitic white mica remains stable in the crustal
parts of the slab and does not significantly contribute to water release.

Based on the mass balanced boron distribution, the mass of boron (kg B/m³ rock) released
from the slab is calculated (Fig. 12b). These values show a drastic decrease across the profile
down to ~170 km slab surface depth, followed by a characteristic and spike-like increase
where antigorite dehydration takes place in the slab mantle. The continuous water release
from SSZ wedge serpentinites and slab crust explains the strongly decreasing B supply with
increasing slab depth because the fluid-mobile B is flushed out with the water. Thus, our
model reproduces the decreasing B/Nb ratios observed in various across-arc trends that were
attributed to continuous dehydration reactions in the oceanic crust (Ryan et al., 1995;
Marschall et al., 2007). At the tip of the antigorite-out reaction in the slab mantle, the transfer
of large amounts of boron into the hanging wall plate is predicted, causing B enrichment in
arc melts generated there. In terms of B isotope composition, our model shows high δ¹¹B
values in the fore-arc region, followed by a continuous linear decrease in δ¹¹B from ~110 to
~175 km slab surface depth and a distinct increase where the terminal antigorite-out reaction
in the slab mantle is located (Fig. 12c). Initially, dehydration of sediments and SSZ wedge
serpentinites releases extremely heavy boron into the fore-arc region, as observed in fore-arc
slab fluids from serpentinite seamounts (Benton et al., 2001). Subsequently, dehydration of
the igneous oceanic crust exemplifies the continuous dehydration-induced 11B depletion in the residual rocks leading to a decreasing δ^{11}B trend in the released fluids (Marschall et al., 2007; Rosner et al., 2003). This trend has not only been observed in Kamchatka, but also in the Kurile (Ishikawa and Tera, 1997), West Pacific (Ishikawa and Nakamura, 1994) and Chile (Rosner et al., 2003) subduction zones (Fig. 2). Finally, the high-B fluid released by antigorite breakdown in the slab mantle directly transfers a high-δ^{11}B signature towards the surface due to the high water flux and the finite capability of the crust to incorporate B. Continuing dehydration of slab crust alone is not able to deliver any significant amounts of water or boron at that depth. A major implication of our model is that the absolute δ^{11}B values expected where antigorite breaks down depend on the hydration state of the slab mantle. In the slab crust, refertilization leads to an additional decreasing δ^{11}B trend caused by the lawsonite-out reaction between 200 and 250 km slab depth, although this trend is blurred at the model surface by fluid-rock interaction.

If we assume unmodified transport of the B signal from the top of the model surface through the upper part of the SSZ wedge mantle and the continental crust, the distinct [B] – δ^{11}B relationship of fluids derived from wedge mantle, crust and slab mantle may be used to identify fluid source lithologies in arc lavas (Fig. 13). It is notable that the position of the slab mantle dehydration is primarily dependent on the stability of antigorite. In our thermodynamic model we use a binary Fe-Mg, Al-free solid solution model of antigorite, which might underestimate the upper stability limit, as Al incorporation into antigorite can result in an increase of the maximum stability in the order of 30°C (Padrón-Navarta et al., 2013). Regarding the spatial scale of our model, together with the fact that Al solution into antigorite has insignificant effects on the co-existing phase relations, we assume this uncertainty to be of minor importance for our interpretation. As pointed out by Scambelluri and Tonarini (2012), arc lavas with δ^{11}B greater than that of slab fluids require serpentine as source component. The relatively B-rich, high-δ^{11}B nature of the South Sandwich lavas (Fig. 2) was attributed to the influence of serpentine-derived fluids from the mantle wedge (Tonarini et al., 2011), in agreement with the characteristics of the modeled mantle wedge – derived fluids. In contrast, slab-derived fluids are expected to have lower B contents. Fluids derived from the slab crust trend toward negative δ^{11}B values, whereas those from the slab mantle have positive δ^{11}B values (Fig. 13). For each individual subduction zone modeled, thermal constraints and variations in the input parameters need to be taken into account when evaluating the calculated values. Using the additional constraints of the location relative to the trench and the depth to the slab, which are available for natural samples, the pattern modeled
here may serve as a useful guide in evaluating fluid sources. For the Kamchatka subduction zone model, the difference in δ^{11}B between fluids derived from slab crust compared to slab mantle is on average about 10‰, but importantly, at 175 km depth-to-slab where the CKD volcanoes are located, crustal fluids would have highly negative δ^{11}B values. Hence, a fluid contribution from the hydrated slab mantle is indicated. Such serpentinite-derived fluid fluxes at eclogite-facies conditions from the subducted slab mantle have also been postulated in several case studies (Herms et al., 2012; John et al., 2004; Martin et al., 2014), corroborating our interpretation that hydrated slab mantle plays an important role for the water budget in subduction zones.

4. Discussion and Outlook

Both of the examples given in this paper show the immense capacity of combined thermodynamic and trace element models to investigate fluid-rock interaction processes in metamorphic geology. Further, we have shown that boron is a well-suited trace element to trace and quantify fluid-rock interaction at various scales. Our results therefore corroborate the findings of earlier investigations (Bebout and Nakamura 2003; Bebout et al., 2007; Boschi et al., 2008; Bouvier et al., 2008; Brenan et al., 1998; Deyhle et al., 2001; Halama et al., 2014; Ishikawa and Nakamura 1993; Ishikawa and Tera 1997; King et al., 2007; Konrad-Schmolke et al., 2011b; Leeman et al., 1994; Marschall et al., 2007; Nabelek et al., 1990; Pabst et al., 2012; Paquin et al., 2004; Peacock and Hervig 1999; Rose et al., 2000; Sano et al., 2001; Scambelluri et al., 2004; Spivack and Edmond, 1987; Straub and Layne 2002; Tonarini et al., 2001; Wunder et al., 2005) and emphasize the need of more detailed geochemical models that use trace elements and their isotopic composition as a proxy for fluid-rock interaction. At present such complex combined numerical models that focus on the simulation of mass transfer in the solid Earth are at the beginning of unfolding their capacities and more detailed experiments require integration of data and modeling techniques that are still under development.

The two examples presented in this paper diverge in a pivotal aspect: whereas the results of the first example can be directly compared to natural rocks affected by the fluid-rock interaction process, and thus most model parameters can be linked to natural observations, this is not the case in the second, large scale example. Subduction zone models focusing on deep-seated processes, such as the thermal evolution of the subducted slab, the water release and water migration at elevated depth, have generally a large number of unknowns in the
boundary conditions of the models, which leads to a high degree of freedom with respect to
the interpretation of the model results. Relevant parameters for the mechanical model that is
used as basis for the thermodynamic-geochemical model of the Kamchatkan subduction zone
comprise rheological parameters, lithological slab structure and the coupling between the slab
and the overriding mantle, all of which are specifically discussed in Manea and Manea (2007)
and generally in a number of recent papers that concentrate on benchmarking numerical
subduction zone models in order to make different approaches comparable (Gerya and Yuen
2007; Van Keken et al., 2008; Syracuse et al., 2010). It is beyond the scope of this
collection to test the influence of various parameters on the result of the thermo-mechanical
model, but rather to demonstrate the potential of coupled geochemical-thermo-mechanical
models to properly interpret geochemical data from arc volcanic rocks – data that is abundant
in the literature, but has not yet been implemented into thermo-mechanical subduction zone
models (Gerya 2011). As shown in our second example, the implementation of
thermomechanical models into thermodynamic and geochemical calculations is crucial for the
quantification large-scale elemental fluxes (e.g., Rüpeke et al., 2004; Hacker, 2008; Van Keken
et al., 2011). The striking coincidence between the water release pattern, the position of
volcanic centers in the Kamchatkan arc as well as the B concentration and isotope patterns in
the arc volcanic rocks should therefore be seen as stimulation for further research in that field,
but also to point out the importance of the subducted slab mantle for the water budget in
subduction zones. Furthermore we would like to stress that B and its isotopic composition
serve as excellent tracer for these processes. However, the combination of thermomechanical,
thermodynamic and trace element models still faces computational obstacles that hinder a
complete implementation into a single model. Most thermomechanical models use
thermodynamic lookup-tables to constrain mineralogically controlled rheological parameters
(e.g., Iwamori, 2007; Arcay et al., 2005) and, in turn, thermodynamic and geochemical
models use the thermal pattern from thermomechanical models as basis for their
thermodynamic predictions (this study). However, in order to fully quantify mass transfer in
three dimensions it will be a major task in geodynamic-geochemical modeling to implement
fluid-mediated element transport into thermomechanical models.

4.1. Constraints on fluid migration processes

The mode of fluid transport, e.g. channelized vs. pervasive, as well as the volume and
intensity of the fluid-rock interaction process predominantly control the amount and rate of
transported solutes (Zack and John 2007). For a correct numerical formulation of
thermodynamic-geochemical models the fluid migration mechanism plays a crucial role. In
turn, variation of the boundary conditions of such combined models can be used to constrain
possible modes of fluid percolation in a particular setting. In nature there are examples of both
highly channelized fluid flux in brittle and ductile shear zones (e.g., Bebout and Barton 1993,
Austrheim 1987) as well as pervasive fluid flux by interconnected fluid films along grain
boundaries (Keller et al., 2006; de Meer et al., 2005, Konrad-Schmolke et al., 2011a, example
1 in this work; see also Oliver 1996 for a detailed review) reflecting a broad range of fluid
flow mechanisms in natural rocks that might be active at the same time in a single sample
(Fusseis and Handy 2008). Several works provide a theoretical background for fluid flux in
metamorphic rocks (Connolly and Podlachikov 2007, Fusseis et al., 2009, Kruhl et al., 2013)
and numerical thermomechanical models increasingly focus on the prediction and
quantification of fluid fluxes in metamorphic rocks, especially in subduction zones (see Gerya
2011 and references therein). As metamorphic porosity and thus permeability is transient in
most rocks, unequivocal evidence for a certain fluid-migration mode is lacking in most
natural samples.

Besides experiments that provide insight into porosity development and fluid-induced mineral
replacement mechanisms (Putnis and Mezger 2004), natural samples that preserve areas that
are unaffected by fluid infiltration together with overprinted parts, such as the samples in our
first example, are crucial for the investigation of fluid migration during metamorphism and
for the validation of numerical models (Jamtveit et al., 2008; Putnis and Austrheim 2010;
Konrad-Schmolke et al., 2011a). Although sensitivity tests allow determination of the critical
parameters and give insight into the robustness and validity of numerical model results (e.g.,
Spakman and Wortel 2004; Martí et al., 2009; Gray and Pysklywec, 2012), comparison of the
modeled processes with their effect on natural rocks is, whenever possible, indispensable. As
fluid-rock interaction processes in natural rocks must be investigated from km- to nm-scale
and comprise chemical effects that often require high precision combined with high spatial
resolution scientific advances in this field are directly coupled with technical innovations
(Gianuzzi and Stevie 1999; Albarède et al., 2004; Fusseis et al., 2009; Kylander-Clark et al.,
2013). For example, with high-resolution analytical techniques, such as TEM, X-ray
tomography using synchrotron radiation or dual beam focused ion beam investigations, syn-
metamorphic porosity development can be visualized in natural samples and experiments
(e.g., Fusseis et al., 2009, Kruhl et al., 2013) and the sites of fluid rock interaction can be
chemically analyzed. However, proper sample selection is of utmost importance in order to
trace the effects of fluid rock interaction at various scales. Fig. 14 shows an example of
porosity formation in a natural rock from the Franciscan mélange complex at Jenner, California. A metre-sized block of eclogite is partly transformed into blueschist with a clearly visible reaction front running through the block (Fig. 14a). The sharp reaction front separates a moderately affected area where the assemblage clinopyroxene+garnet+rutile is well preserved from a strongly overprinted part with the assemblage glaucophane+plagioclase+titanite (Fig. 14b). One of the strongly zoned clinopyroxene crystals points into the reacted part and the reaction front is running through the lowermost edge of the crystal (Fig. 14c). The electron transparent slice, taken perpendicular to the reaction front (red line in c), shows a µm-sized pore that comprises a dark rim, dark worm-like precipitates and bright Ga precipitate from the FIB sectioning in its interior (Fig. 14d). The dark rim consists of amorphous Si-rich material and is connected with the worm-like material in the interior of the pore (Fig. 14e) that has approximately the same major element composition as the amorphous rim (Fig. 14f and Fig. 15). Precise measurements of major and trace element concentrations and the isotopic compositions in such µm- to nm-scale features displays a challenging task for future analytical developments as such features will reveal the connection between the processes of porosity formation, fluid migration, fluid-rock interaction and metamorphism.

Regarding the quantification of element transport – often in the focus of combined thermodynamic-geochemical models – aqueous fluids and hydrous melts have a fundamental importance with respect to the mass transfer in geological systems (e.g., Hermann et al., 2006). In many metamorphic environments, pressures and temperatures exceed the critical point of water resulting in a drastic increase of dissolved material in the transport agent compared to ambient pressures and temperatures (e.g., Manning 1994). Consequently, the thermodynamic and chemical properties of supercritical fluids and hydrous melts control large parts of the mass transfer in the lithosphere. Experiments have shown that the solubility of major and trace elements in supercritical fluids is also strongly dependent on fluid chemistry (e.g., Manning et al., 2008; Wilke et al., 2012). Moreover, solubilities of several elements are enhanced by the addition of ligands (Cl\(^-\), F\(^-\), CO\(_3^{2-}\) and SO\(_4^{2-}\)) and by complexing with major rock-forming constituents (Antignano and Manning 2008; Tsay et al., 2014). In turn, the fluid chemistry might change along its migration path as a result of the interaction with the wall rock and/or due to changing chemistry of the rock column. Thus, the interaction between fluid chemistry – that may comprise a complete miscibility between hydrous melts and dilute aqueous solutions (Manning, 2004; Hermann et al., 2006) – soluble metal compounds, dissolved trace elements and host rock chemistry controls the fluid-mediated
mass transfer in metamorphic systems. Such reactive fluid flow systems can be quantified with combined thermodynamic-geochemical models. To develop more reliable models additional experimental data as well as knowledge of thermodynamic properties and equations of state of supercritical fluids and the solutes therein are needed (e.g., Hauthal, 2001; Gottschalk et al., 2007; Dolejis and Manning, 2010). Improved analytical instrumentation and experimental setups will allow determination of more precise distribution coefficients, especially those between solid and liquid phases (e.g., Kessel et al., 2005), which are most critical for such trace element models. Determining and quantifying a potential pressure, temperature and host mineral chemistry dependence of the trace element distribution will be essential for forward models that span large pressure and temperature ranges, such as the subduction zone model shown above. Integrating these data in Gibbs energy minimization algorithms, reactive-flow models (e.g. Baumgartner and Ferry 1991) or combined thermodynamic-trace element models (this study) will enable a full quantification of reactive fluid flow and the associated mass transfer in the solid Earth.

4.2. Constraints on thermodynamic and geochemical model parameters

In contrast to most applications in material sciences, simulations of natural processes in geosystems are confronted with complications arising from multiphase-multicomponent chemically open systems that must be simplified in order to be mathematically feasible. In terms of the thermodynamic treatment of the envisaged process much attention must be paid to set appropriate simplified boundary conditions of the model. At first, this concerns the choice of an appropriate chemical system, the selection of thermodynamic datasets and solution models as well as the choice of appropriate thermodynamic variables, such that the boundary conditions of the model reflect the envisaged geological process (e.g., Connolly 2005; Powell et al., 2005). In case of chemically open systems element fractionation processes, such as fluid percolation and fractional crystallization, must be reflected in the models. This circumstance is often disregarded, but has to be considered in order to avoid misinterpretations of thermodynamic equilibrium calculations (Marmo et al., 2002; Konrad-Schmolke et al., 2008a).

The increasing use of phase diagrams in progressively complex chemical systems in the geoscientific literature suggests a rapid development with respect to the understanding of the metamorphic evolution of rock samples. However, as concluded nicely in Powell and Holland (2005), thermodynamic models can be excellently used to solve metamorphic-geodynamic problems as long as the limitations of the available thermodynamic data are known. For
example, significant simplifications must be made with respect to the chemical composition of geosystems in order to make them feasible for mathematic treatment. On the other hand, constraining the chemical system has the disadvantage that the effects of omitted chemical components on the stability of solution phases cannot be predicted. This circumstance is well known for the garnet solid solution, where Mn has a profound influence on garnet stability (e.g., Marmo et al., 2002; Konrad-Schmolke et al., 2005). Furthermore, compositional simplifications of the investigated system often require omission of accessory phases that can play an important role for the trace element budget in metamorphic rocks (e.g., Hermann, 2002). Since thermodynamic data as well trace element distribution coefficients for accessory phases are scarce and contain large uncertainties, incorporation of such phases into thermodynamic and trace element models remains an important task for the future (e.g., Kelsey and Powell, 2010; van Hinsberg et al., 2011).

Many thermodynamic standard state data for chemical endmembers as well as reliable solid solution models for complex phases, such as amphibole and chlorite, are missing and research in this field is work in progress. Modern analytical technology allows determination of precise thermodynamic properties of geologically relevant phases (e.g., Dachs et al., 2009) in calorimetric experiments and improvements have been made to derive more precise activity-composition relationships (e.g., Powell and Holland 2008 and references therein) and equations of state for different geologic environments (e.g., Stixrude and Lithgow-Bertelloni, 2005; Holland and Powell, 2011; Holland et al., 2013). However, none of the published datasets covers the entire range of pressure-, temperature- and compositional variations in geosystems. Regarding the rapidly evolving computational capacities it seems likely that numerical simulations of geomaterials will enable significant developments in thermodynamic applications in geosciences (e.g., van Hinsberg et al., 2005).

Especially in material science and industrial applications (e.g., Dixon and Gutowski 2005) the study of thermodynamic and physical properties of solid and liquid phases involves molecular dynamic and *ab initio* models (e.g., Prausnitz, 1969; Belonoshko and Saxena, 1991; Kalinichev 2001; Cygan, 2001). Both approaches minimize the energy of a given system that is controlled by the electromagnetic forces within and between molecules. Whereas molecular dynamic models require empirical data to model the intra- and intermolecular forces, *ab initio* or quantum mechanical models are directly based on wave functions that describe electron orbitals on the basis of the Schrödinger equations. Consequently, these mathematical approaches require a minimum of empirical data to obtain fundamental thermodynamic
properties of phases, equations of state, physico-chemical properties as well as trace element partition and isotope fractionation coefficients (e.g., Jahn and Wunder 2009; Ottonello et al., 2010; Kowalski et al., 2013; Haigis et al., 2013). Especially the thermodynamic properties of fluids and aqueous species are increasingly simulated utilizing molecular dynamics or \textit{ab initio} models (e.g., Kalinichev 2001 and references therein; Sedlbauer et al., 2000). Due to the immense computational resources needed for these simulations, recent research is focused on simple chemical systems, such as phases in the Earth’s mantle or core (e.g., Matsui et al., 2000), but in the near future, numerical atomistic simulations will lead to a better understanding and a prediction of processes in more complex geosystems (e.g., Cruz et al., 2005). In combination with the approach described in van Hinsberg et al., 2005, who derive thermodynamic properties of complex phases by combining the fractional properties of their constituent chemical compounds, \textit{ab initio} models might soon become valuable sources of thermodynamic data for complex phases relevant for geological processes.

\textbf{Acknowledgements}

We thank Vlad Manea for generously providing the thermal model of the Kamchatkan subduction zone and Richard Wirth as well as Anja Schreiber for the TEM analyses and FIB sectioning, respectively. Further, we thank Marco Scambelluri for the invitation to that Review Article and for the editorial handling of the manuscript. We also thank Timm John and an anonymous reviewer for their critical and constructive comments that significantly improved the manuscript. Funding of this work by the Deutsche Forschungsgemeinschaft (grant KO-3750/2-1) is gratefully acknowledged.
Figure captions

Fig. 1: Two examples of combined thermodynamic-geochemical modeling applied to the petrogenesis of Archean tonalite-trondhjemite-granodiorite (TTG) series rocks (a) and primitive arc magmas (b), respectively. (a) Primitive mantle–normalized trace element patterns of measured Archean TTG rocks from the Isua Supracrustal Belt (gray area) and modeled primitive melt compositions (modified from Nagel et al., 2012). Colored dashed lines represent trace element compositions of the two protoliths considered in the modeling, present-day normal mid-ocean ridge basalt (N-MORB) and Isua tholeiite. Colored solid lines indicate compositions of TTGs modeled for 10% melting at different melting pressures. Characteristic trace element features of natural TTG, including negative Ti and positive Zr-Hf anomalies, are best reproduced by melting of Archean tholeiite at 10-14 kbar, which was considered to represent the source lithology for Archean TTG rocks by Nagel et al. (2012). (b) N-MORB–normalized trace element patterns of arc basalts from the NE Japan arc (red circles) and modeled results from Arc Basalt Simulator (ABS) (modified from Kimura et al., 2009). The thin blue lines mark the minimum and maximum fits calculated by the ABS algorithm. Compositions for the volcanic front were calculated using the Tohoku (NE Japan arc) slab surface trajectory (SST), whereas rear arc compositions were modeled using the Cascadia SST.

Fig. 2: (a) Boron isotope data from volcanic arcs in relation to the depth of the subducting slab. Several arcs display decreasing δ^{11}B values with increasing depth to slab. Notable exceptions are the South Sandwich Islands arc, for which a constant depth is assumed, and the Kamchatka arc, for which δ^{11}B values are increasing following the typical δ^{11}B decrease across the volcanic front. (b) Trend of decreasing δ^{11}B with increasing Nb/B in arc volcanic rocks. The SSI arc deviates from the main trend due to elevated δ^{11}B. Data sources: Kamchatka – Ishikawa et al., 2001; Izu – Ishikawa and Nakamura, 1994; Kuriles – Ishikawa & Tera, 1999; NE Japan – Moriguti et al., 2004; Central Andes – Rosner et al., 2003; South Sandwich Islands – Tonarini et al., 2011; Conical Seamount – Benton et al., 2001; Atlantis Massif – Boschi et al., 2008; MORB – Shaw et al., 2012; AOC – Yamaoka et al., 2012;
Marine sediments – Tonarini et al., 2011; Oceanic basalts – Turner et al., 2007. In (b), data of the other arcs include data shown in (a) and additional data from Smith et al. (1997) and Leeman et al. (2004).

Fig. 3: Schematic cross section through a subduction zone (modified from Wunder et al., 2005) and sketches of the fluid-rock interaction scenario modeled in this study. Areas of interest are marked by rectangles in the upper sketch. The two lower images show fluid-rock interaction at the slab-wedge interface and recrystallization of phengite and amphibole on the μm to mm scale, as observed in samples from the Sesia Zone. Boron concentrations and δ11B values typical for natural reservoirs were taken from Wunder et al. (2005) with additional data from Leeman et al. (2004) and Tonarini et al. (2011) for marine sediments and from Spivack and Edmond (1987), Boschi et al. (2008) and Vils et al. (2009) for serpentinized oceanic mantle.

Fig. 4: a) Back-scattered electron image of partially overprinted phengite from eclogites-facies rocks of the Sesia Zone. Phengite and sodic amphibole grains are compositionally modified along grain boundaries and other fluid pathways. b) Major element microprobe profile along the arrow shown in a). Compositional variations comprise predominantly a Fe-Mg exchange with the other elements being largely unaffected. c) Boron isotopic and concentration data from phengites of the EMS unit in the Sesia Zone (data from Konrad-Schmolke et al., 2011b and Halama et al., 2014). Overprinted areas have consistently lower B contents than the corresponding relict cores, but δ11B values are similar. Note the coupled decrease in [B] and increase in δ11B in mylonitic phengite from the shear zone (green arrow).

Fig. 5: (a) Phase relations and water content in solids in equilibrium assemblage diagrams for sample MK-55 from the Eclogitic Micaschist unit of the Sesia Zone. The diagrams on the left hand side were calculated for peak P-T and water-saturated conditions. The diagrams on the right hand side were calculated with excess H$_2$O, simulating the fluid influx at 1.35 GPa. (b) X_{Mg} in phengite depending on P and $X_{\text{H}_2\text{O}}$. The red arrow marks the retrograde path and the blue line represents the water saturation line. Initially, decompression leads to increasingly water-
undersaturated conditions in the rock until fluid influx at 1.35 GPa occurs. At these pressures,
increasing X_{H2O} causes a significant decrease in X_{Mg}. Mineral abbreviations: qtz = quartz,
phng = phengite, pg = paragonite, gln = glaucophane, cpx = clinopyroxene, ep = epidote, lws
= lawsonite, pl = plagioclase, chl = chlorite, bt = biotite, cam = clinoamphibole, grt = garnet,
mt = magnetite.

Fig. 6:

Compositional evolution in phengite and modal phase abundances along the retrograde P-T
path from 1.45 to 1.1 GPa. Drastic compositional changes are associated with fluid influx at
1.35 GPa, causing a decrease in Si_T and X_{Cel} in phengite. Glaucophane, epidote and
paragonite abundances increase, whereas omphacite and phengite abundances decrease due to
the fluid influx. Mineral abbreviations as in Fig. 1.

Fig. 7:

Fluid-rock interaction model. The evolution of $[B]_{phng}$ and $\delta^{11}B_{phng}$ are shown depending on
the amount of accumulated water (left column) and with decreasing pressure along the
retrograde P-T path (middle column). The range of observed compositional features in relict
phengite cores (green), overprinted phengite rims (red) and mylonitic phengite (blue) are
shown for comparison. In the right column, the relevant parameters are combined to illustrate
how the curves shown in (a) and (b) are linked. The dashed line labeled “fluid influx” marks
the maximum amount of water available before the influx that is consistent with the
composition of the overprinted rims (left column) and the position of the influx on the
retrograde path (middle column).

Fig. 8:

Summary of modeled trends of B release and B isotope fractionation in a slab-derived fluid
during subduction of oceanic crust as modeled by Marschall et al. (2007). Solid lines are B
concentrations, dashed lines are $\delta^{11}B$ values. During subduction, both B concentrations and
$\delta^{11}B$ decrease with increasing pressure. The decrease is particularly strong if there is no
phengite present in the rock.

Fig. 9:

a) A thermal pattern for the Kamchatkan subduction zone derived from the thermomechanical
models of Manea and Manea (2007) was used as basis for the pressure and temperature
relations in the thermodynamic model. The structure of the modeled slab includes all
lithologies relevant for the B budget in our models. b) Isotopic fractionation values calculated
for the thermal pattern in a) with the data from Wunder et al., 2005.

Fig. 10:
Contoured pseudosection of the modeled slab, subdivided into SSZ wedge mantle, sediments,
igneous oceanic crust for dry (a) and hydrated (b) slab mantle. Colored contours show the
amount of water in solid phases. Mineral abbreviations as in Fig. 1.

Fig. 11:
Modeled (a) boron concentrations and (b) corresponding $\delta^{11}B_{\text{rock}}$ values assuming water-
saturated sediments and oceanic crust and a dry slab mantle. The input parameters for wedge
mantle (50 µg/g B, $\delta^{11}B = +15$), sediments (40 µg/g B, $\delta^{11}B = +5$) and oceanic crust (25 µg/g
B, $\delta^{11}B = +0.8\%$) change during forward modeling due to the fluid-solid B elemental and
isotopic fractionation. For the slab mantle, constant values of 0.1 µg/g B and $\delta^{11}B = -10\%$ are
assumed.

Fig. 12:
Modeled dehydration, release of boron and corresponding $\delta^{11}B_{\text{fluid}}$ values. (a) SSZ wedge
mantle dehydration dominates water release in the forearc. Chlorite breakdown in crust and
wedge mantle is the dominant water source at shallow depths down to ~150 km. The marked
peak at ~175 km slab surface depth results from serpentine breakdown in the slab mantle. (b)
The boron pattern mimics the water release, including high concentrations in the forearc and a
prominent peak at ~175 km slab surface depth. (c) High $\delta^{11}B_{\text{fluid}}$ values characterize water
release into the forearc, followed by a systematic decrease in $\delta^{11}B_{\text{fluid}}$ values, reflecting
continuous dehydration. The increase in $\delta^{11}B_{\text{fluid}}$ at ~175 km slab surface depth is coupled to
serpentine dehydration in the slab mantle, and the height of the $\delta^{11}B$ curve depends on water
contents in the slab mantle. For a slab mantle hydrated to a depth of 15 km, the best fit is
obtained for ~2.5 wt.% H$_2$O. In all figures, a simplified topographic profile across Kamchatka
is shown for comparison. Boron concentration data in (b) are given as B/Nb ratios to
eliminate fractionation effects in natural samples. Data from Kamchatka samples are from
Ishikawa et al. (2001). Please note that the high frequency variations in the water release are
the result of the incremented thermal pattern and does not reflect distinct fluid pulses.
Composition of fluids released at the upper boundary of the model into the overlying mantle wedge. Distinct areas can be defined depending on the dominant water and boron source lithologies. Fluids derived from the SSZ wedge mantle have the highest B concentrations and the highest δ^{11}B values, and all fluids released by mantle deserpentinization have strongly positive δ^{11}B values distinct from crustal fluids.

Investigation of fluid-rock interaction processes from m- to nm-scale, exemplified by a fluid-induced blueschist-facies overprint of eclogite from a subduction mélange (Jenner, California, USA). See text for details.

TEM-EDX analyses from areas shown in Fig. 14f. Both the overprinted rim as well as worm-like structures in the pore interior consist of an amorphous silica-rich material with minor concentrations of Al, Ca and Fe. Ga and Cu peaks result from the Ga-beam used for FIB sectioning and the sample holder, respectively.

References

Antignano, A., Manning, C.E., 2008. Rutile solubility in H₂O, H₂O–SiO₂, and H₂O–NaAlSi₃O₈ fluids at 0.7–2.0 GPa and 700–1000 C: implications for mobility of nominally insoluble elements. Chemical Geology, 255, 283-293.

Bebout, G.E., Barton, M.D., 1993. Metasomatism during subduction: products and possible

Gast, P.W., 1968. Trace element fractionation and the origin of tholeiitic and alkaline magma

revision of MELTS aimed at improving calculation of phase relations and major element
partitioning involved in partial melting of the mantle at pressures up to 3 GPa. Geochemistry

revision of MELTS aimed at improving calculation of phase relations and major element
partitioning involved in partial melting of the mantle at pressures up to 3 GPa. Geochemistry

Ghiorso, M.S., Sack, R.O., 1995. Chemical mass transfer in magmatic processes. IV. A
revised and internally consistent thermodynamic model for the interpolation and extrapolation
of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures.

Contributions to Mineralogy and Petrology 119, 197-212.

Ghiorso, M.S., Sack, R.O., 1995. Chemical mass transfer in magmatic processes. IV. A
revised and internally consistent thermodynamic model for the interpolation and extrapolation
of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures.

Contributions to Mineralogy and Petrology 119, 197-212.

TEM specimen preparation. Micron, 30(3), 197-204.

ages deduced from Rb/Sr mineral systematics: The Maksyutov complex, Southern Urals,

Goldschmidt, V.M., 1937. The principles of distribution of chemical elements in minerals and
rocks. Journal of the Chemical Society 37, 655-673.

Goncalves, P., Oliot, E., Marquer, D., Connolly, J.A.D., 2012. Role of chemical processes on
shear zone formation: an example from the Grimsel metagranodiorite (Aar massif, Central

Gorman, P. J., Kerrick, D. M., Connolly, J. A. D., 2006. Modeling open system metamorphic
decarbonation of subducting slabs, Geochem. Geophys. Geosyst., 7, Q04007,

European Journal of Mineralogy 9, 175-223.

Gottschalk, M., 2007. Equations of state for complex fluids. Reviews in Mineralogy and
Geochemistry, 65(1), 49-97.

water transport control the formation and location of arc volcanoes. Nature 459, 694-697.

solvus: I. P-T-X limits derived from the Na-K compositions of natural, quasibinary

Jahn, S., Wunder, B., 2009. Lithium speciation in aqueous fluids at high P and T studied by ab initio molecular dynamics and consequences for Li-isotope fractionation between minerals and fluids. Geochimica et Cosmochimica Acta, 73(18), 5428-5434.

Konrad-Schmolke, M., Zack, T., O’Brien, P.J., Barth, M., 2011b. Fluid migration above a

Manea, V.C., Manea, M., 2007. Thermal models beneath Kamchatka and the Pacific plate
rejuvenation from a mantle plume impact. In: J. Eichelberger, P. Izbekov, N. Ruppert, E.
Gordeev and J. Lees (Editors), Volcanism and Tectonics of the Kamchatka peninsula and
adjacent arcs, Geophysical Monograph Series. Geophysical Monograph Series, pp. 77-90.

Na2Si3O7-H2O at high temperatures and pressures by in-situ synchrotron radiation micro-

Margules, M., 1895. Über die Zusammensetzung der gesättigten Dämpfe von Mischungen.
Sitzungsberichte der Kaiserliche Akademie der Wissenschaften Wien Mathematisch-
Naturwissenschaftliche Klasse II 104, 1243–1278.

Marmo, B.A., Clarke, G.L., Powell, R., 2002. Fractionation of bulk rock composition due to
porphyroblast growth: effects on eclogite facies mineral equilibria, Pam Peninsula, New

Marschall, H.R., Altherr, R., Gméling, K., Kasztovszky, Z., 2009. Lithium, boron and
chlorine as tracers for metasomatism in high-pressure metamorphic rocks: a case study from
Syros (Greece). Mineralogy and Petrology.

Partitioning and budget of Li, Be and B in high-pressure metamorphic rocks. Geochimica et
Cosmochimica Acta 70, 4750-4769.

Marschall, H.R., Altherr, R., Rüpke, L., 2007. Squeezing out the slab - modelling the release
of Li, Be and B during progressive high-pressure metamorphism. Chemical Geology 239,
323-335.

Garnet oxygen analysis by SHRIMP-SI: Matrix corrections and application to high-pressure
metasomatic rocks from Alpine Corsica. Chemical Geology, 374, 25-36.

assemblage with K-feldspar, phlogopite, and quartz. Contributions to Mineralogy and
Petrology 96, 212-224.

Journal of Metamorphic Geology 6, 173-204.

distribution in steels. Surface and Interface Analysis 43(1-2), 573-575.

Wilke, M., Schmidt, C., Dubrail, J., Appel, K., Borchert, M., Kvashnina, K., Manning, C.E.,
2012. Zircon solubility and zirconium complexation in $\text{H}_2\text{O}+\text{Na}_2\text{O}+\text{SiO}_2\pm\text{Al}_2\text{O}_3$ fluids at high pressure and temperature. Earth and Planetary Science Letters, 349, 15.

a) slab surface depth (km)

b) slab surface depth (km)

1: chl phng gln cpx law amph
2: chl phng tc cpx law amph
3: chl phng tc cpx law
4: chl phng tc cpx grt law
5: tc cpx grt law phng
6: phng cpx grt
7: chl phng cpx law
8: opx ol cpx grt amph
9: opx ol cpx grt
10: opx chl ol cpx grt
11: opx chl ol cpx
reaction front

Eclogite: cpx + grt + rt

Blueschist: gln + tn + plag

Cpx

Gln

Tn

reaction front

m-scale

mm-scale

mm-scale

nm-scale

sample surface

Cpx

Ga precipitate (from FIB)

amorphous overprinting zone

Analysis 1

Analysis 2

100 nm

1 µm

10 cm

2 µm

Analysis 1

Analysis 2