Nickel-zeolite composite catalysts with metal nanoparticles selectively encapsulated in the zeolite micropores

Deizi V. Perona,b, Vladimir L. Zholobenkoc, Melissa Rodrigues de la Rochaa,b, Michèle Oberson de Souzab, Liliana A. Ferisb, Nilson R. Marciliob, Vitaly V. Ordomskya and Andrei Y. Khodakova,*

aUniv. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille, France

bUniversidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90040-040, Brazil

c Keele University, School of Physical and Chemical Sciences, Staffordshire, ST5 5BG, United Kingdom

*andrei.khodakov@univ-lille.fr (Corresponding author)
Abstract

Metal zeolite composite catalysts have found numerous applications in adsorption, gas separation, petroleum refining and chemical industry. The key issue in the design of these catalysts is the localization of the metal within the zeolite structure. This paper focuses on a new approach to the synthesis of nickel-zeolite composite catalysts selectively containing metal nanoparticles inside the zeolite pores. In the catalysts prepared by conventional impregnation, metal particles from the external surface of the zeolites were selectively removed by extraction with bulky polymer molecules of poly-4-styrenesulfonic acid. The method is particularly suitable for the ZSM-5 zeolite with relatively narrow micropores. The nickel zeolite catalysts were tested in hydrogenation of toluene and 1,3,5-tri-isopropyl benzene (TIPB). The removal of nickel particles from the zeolite external surface leads to a considerable decrease in the hydrogenation rate of the bulky TIPB molecules, while toluene hydrogenation was affected to a much lesser extent and was almost proportional to the nickel content. The proposed methodology can be extended to other types of microporous catalysts.

Keywords: composites; encapsulation; zeolites; nickel; catalyst, micropores; shape-selectivity
Introduction

Zeolites, due to their acidic properties and microporosity, are important adsorbents, catalysts and catalytic supports for gas separation, petroleum refining [1-5] (e.g. catalytic cracking, hydrocracking, isomerization, alkylation, etc.) and chemical processes such as oxidation, fragrance synthesis, hydrogenation and for many other industrial reactions involving organic compounds. They are also considered for the synthesis of fine chemicals from biomass [6-8]. More recently, composite catalysts containing both metallic and zeolite active phases showed promising catalytic performance in syngas conversion to value-added products, such as direct single-step synthesis of liquid fuels from syngas [9,10] or synthesis of dimethyl ether [11].

Because of its reasonable cost, satisfactory catalytic performance and availability, nickel could be used in zeolite catalysts as an alternative to expensive noble metals. Nickel-zeolite catalysts have found their application in many important catalytic reactions: hydrogenation, isomerization, dehydrogenation, oxidation, oligomerisation, aromatization, hydrogen production, carbon nanotube preparation, NO\textsubscript{x} reduction and hydrocracking [12-19].

Metal-zeolite catalysts often exhibit complex behaviour, because of their multicomponent composition and structure. The concentrations and intrinsic activity of the metal and acid sites, and in particular, their localization are of utmost importance for the catalyst activity, selectivity and stability [20-26]. The reaction selectivity is often affected by the so called \textit{site intimacy}[21]. Moreover, for many reactions, the presence of metal nanoparticles on the zeolite external surface can be undesirable and even detrimental for the catalytic performance.
Conventional synthesis methods of metal zeolite catalysts involve impregnation with metal salts and mechanical mixing. Mechanical mixing of a zeolite with a metal catalyst leads to the preferential localization of the metal component outside the zeolite crystallites. During impregnation, the distribution of cations inside the zeolite depends on their diffusivity [27]. Because of a larger solvating shell, diffusion of multi-charged ions inside the micropores can be rather slow. In all catalysts prepared by impregnation, a considerable amount of metal ions can be still found on the zeolite external surface.

Several methods have been proposed to synthetize metal-zeolite composite catalysts with metal nanoparticles encapsulated in the zeolite crystals and located next to the acid sites. Tsubaki and co-workers [28] designed a core–shell catalyst with a cobalt catalyst in the core and an acidic zeolite membrane on the surface as the shell. The thin zeolite layer on the surface of metallic catalyst does not however, provide the intimacy required for conducting efficient acid-catalysed reactions and may lead to significant diffusion limitations. A rather sophisticated synthetic approach has been recently developed based on the zeolite recrystallization [29, 30]. A complex procedure making use of tetraethylammonium halide salts and halogens has been developed for extraction of Pt nanoparticles from the external surface of zeolites [31]. For specifically synthetized single crystal zeolite ŃnanoboxesŊ a research group in Lyon has developed an extraction method using citric acid [32]. The apparent isolation of metal nanoparticles and acid sites could limit the application of ŃnanoboxesŊ in bifunctional catalysis, where the intimacy between the metal and acid sites is usually required. Therefore, the methods for the design of metal zeolite composite catalysts with metal nanoparticles localized inside zeolite pores in close proximity to the acid sites are still highly desirable. Our group has recently proposed a method [26] for the extraction of cobalt ions from the cobalt zeolite Fischer-Tropsch catalysts using larger
Keggin-type tungstophosphoric acid. Utilizing heteropolyacids for such extraction may represent, however, some risk due to possible catalyst contamination by insoluble oxides, which can be generated during anion hydrolysis.

This paper presents a new approach to the synthesis of nickel-zeolite composite catalysts selectively containing metal nanoparticles in the zeolite micropores using extraction with an organic acid, poly-4-styrenesulfonic acid (PSSA, \(M_w = 70,000-80,000 \)).

The controlled localization of metal nanoparticles either exclusively in the zeolite micropores or also on the zeolite external surface produces strong steric effects on the catalytic performance in the hydrogenation of 1,3,5-tri-isopropyl benzene (TIPB) and toluene over these catalysts.

Materials and methods

Material preparation

The ZSM-5 and BEA commercial zeolites with Si/Al ratios of 11.5 and 12.5 (CBV2314 and CP814E), respectively, were provided by Zeolyst. The Ni-containing zeolites were prepared by incipient wetness impregnation of the ZSM-5 and BEA zeolites with Ni(NO\(_3\))\(_2\)·6H\(_2\)O. The Ni content was 16 wt. %. The prepared catalysts were dried in an oven and calcined in air at 450°C.

Poly-4-styrenesulfonic acid (PSSA, \(M_w = 70,000-80,000 \)) with strong acidity and high stability was used for the extraction of nickel and other atoms from the external surface of zeolites. This acid has relatively large anions. For nickel extraction, 0.5 g of the selected catalyst was treated in 13 g (18% wt.% solution in water) of PSSA at 100°C under reflux for 6 h. After the extraction, the nickel zeolite catalyst was carefully washed, dried and again calcined in air at 550°C.
Characterization

The sample chemical composition was determined by X-ray fluorescence (XRF) using a M4 TORNADO (Bruker) spectrometer. The instrument was equipped with 2 anodes, a rhodium X-ray tube (50 kV/600 mA, 30 W) and a tungsten X-Ray tube (50 kV/700 mA, 35 W), and a Silicon-Drift-Detector Si(Li) (<145 eV resolution at 100000 cps (Mn K\textsubscript{\textalpha})) with a Peltier cooling to 253°C). For sample characterization, the rhodium X-rays with a poly-capillary lens enabling excitation of an area of 200 µm were used. The measurements were conducted under vacuum (20 mbar). Quantitative analysis was performed using fundamental parameter (FP, standardless).

The apparent surface areas of the catalysts should be calculated using the BET model for the P/Po relative nitrogen pressure <0.04. The BET surface area, pore volume, and average pore diameter were determined by low-temperature nitrogen adsorption using a Micromeritics ASAP 2000 automated system. The samples were degassed under vacuum at <10 mmHg at 300°C for 4 h before N\textsubscript{2} physisorption. The total pore volume (TPV) was calculated from the amount of vapor adsorbed at a relative pressure close to unity by assuming that the pores are completely filled with the condensate in the liquid state. The catalyst external surface area and micropore volume were calculated using the deBoer t-plot method.

The samples were characterized by X-ray diffraction (XRD) using a D8 Advance diffractometer equipped with an energy dispersive detector and a monochromatic CuK\textsubscript{\textalpha} radiation source. The samples were analyzed using a step of 0.02° with an acquisition time of 0.5 s. The average size of nickel oxide (NiO) crystallites was determined by the Scherrer equation. Previously it was shown however that it is decomposition of metal precursors and catalyst calcination that generate nickel crystallites and dispersion in the reduced catalysts [33]
The XPS spectra were obtained using a Kratos Axis spectrometer, equipped with an aluminium monochromator for a 1486.6 eV source operating at 120 W. All spectra were recorded under a vacuum of 10^{-8} Torr and recalibrated afterwards with the binding energy of the Al 2p at 74.6 eV. The catalyst reducibility was examined by temperature-programmed reduction (TPR) performed in an AutoChem II 2920 apparatus (Micromeritics). The samples were reduced in a flow of 5 % H$_2$/Ar flow (60 ml/min) and heated up to 900°C with a ramp rate of 10 °C/min.

The TEM images were taken using a Tecnai instrument equipped with a LaB6 crystal operated at 200 kV. Before the analysis, the samples were dispersed by ultrasound in ethanol for 5 min, and a drop of the suspension was deposited onto a carbon membrane supported on a 300 mesh copper grid.

Comparative characterization of the Brønsted and Lewis acid sites in zeolites, was carried out using transmittance FTIR measurements in the 6000-900 cm$^{-1}$ spectral range utilizing pyridine adsorption. FTIR transmittance measurements were performed at ~80°C using catalyst self-supported disks activated inside an in situ IR cell at 450°C for 5 h in vacuum (10^{-5} Torr, the temperature ramp of 1°C/min). FTIR spectra have been collected using a Thermo iS10 spectrometer at a 4 cm$^{-1}$ resolution (0.96 cm$^{-1}$ data spacing). The spectra were analyzed using specialized Thermo software, Omnic. An excess of Py was admitted into the transmittance cell at 150°C, in a stepwise manner until no changes were observed in the spectra. The saturated sample was then evacuated for 20 min at 150°C to remove physically adsorbed Py. To quantify the number of acid sites from the area of the corresponding IR peaks, the following values of the molar absorption coefficients were used: $\epsilon_{\text{B}, \text{ZSM-5}}=1.08$ and $\epsilon_{\text{B}, \text{BEA}}=1.16$ for Brønsted acid sites (peak at ~1546 cm$^{-1}$) and $\epsilon_{\text{L}}=1.71$ cm mol$^{-1}$ for Lewis acid sites (peaks at ~1455-1445 cm$^{-1}$).
Catalytic tests in the toluene and 1,3, 5-tri-isopropylbenzene (TIPB) conversion

All catalytic experiments were conducted in a 20 mL stainless steel batch autoclave. Prior to the catalytic tests, all the samples were activated in a flow of H₂ at atmospheric pressure during 7 h at 400 °C. Then, the reduced catalysts were cooled down to room temperature and transferred under argon to the autoclave reactors filled with liquid toluene or 1,3,5-tri-isopropylbenzene (TIPB). In a toluene hydrogenation experiment, 0.015 g of the catalyst was added to 0.2 g of toluene. In the TIPB hydrogenation, the catalyst amount was 0.05 g. The reactor was filled with 0.2 g TIPB. After adding the catalyst and relevant substrate, the reactor was purged and then pressurized to 20 bar with hydrogen. The temperature and reaction time were respectively 150° and 1 h for toluene conversion and 180°C and 3 h for the TIPB hydrogenation. The reaction products were analyzed using a gas chromatograph (Bruker GC-450) equipped with a flame ionization detector (FID) using CP-Sil 5 CB column. The identification of the reaction products was further confirmed using GS-MS analysis.

Results and Discussion

Catalyst characterization

The TEM images of the Ni/ZSM-5 and Ni/BEA catalysts are shown in Figure 1. The commercial ZSM-5 and BEA zeolites contain zeolite agglomerates constituted by relatively small nanosized zeolite crystallites. In the Ni/ZSM-5 prepared by impregnation, the zeolite particles are covered by large agglomerates of nickel oxide nanoparticles (100–200 nm, Figure 1a). A significant enrichment of the ZSM-5 zeolite external surface with nickel is indicative of its preferential localization outside the zeolite crystallites. Indeed, low diffusivity of hydrated bivalent Ni²⁺ cations limits their access to the ZSM-5 zeolite micropores during the conventional impregnation [27].
Interestingly, very few nickel agglomerates or nanoparticles were detected on the outer surface of the same metal zeolite catalysts after treatment with PSSA (Figure 1b). This suggests that nickel oxide nanoparticles located on the zeolite external surface were almost completely removed by PSSA. This observation is consistent with the results of the XRF analysis (Table 1), which also show a significant decrease in the nickel content in the ZSM-5 zeolites subjected to extraction with PSSA.

In the Ni/BEA zeolite prepared by impregnation, nickel is uniformly distributed between micropores and zeolite outer surface. Indeed, no nickel oxide clusters were detected by TEM on the outer surface of the Ni/BEA sample (Figure 1c). Nickel seems be localized inside of the zeolite micropores. Treatment of Ni/BEA zeolite with PSSA does not results in any noticeable modification of nickel distribution (Figure 1d).

ZSM-5 contains relatively small micropores (diameter ~0.55 nm) and slow diffusion of nickel cations during the impregnation leads to nickel preferential localisation on the surface of crystallites. Note that almost no decrease in the nickel content was observed for the BEA zeolite. The BEA zeolite has larger micropores (0.76 × 0.64 nm) compared to the ZSM-5 counterpart and a more open structure. This could lead to a higher fraction of nickel ions inside the micropores of BEA zeolite in comparison with ZSM-5. Previously, we found [10, 26] using a combination of characterisation techniques, rather uniform distribution of cobalt between the BEA zeolite micropores and external surface in the catalysts prepared by incipient wetness impregnation.

The treatment of Ni/BEA with PSSA leads to a major decrease in the concentration of aluminium ions in the BEA zeolite, whilst the aluminium content is almost unaffected by the extraction with PSSA in ZSM-5. Because of the structural features of the BEA zeolite (larger pores and open structure), PSSA can enter the zeolite micropores and selectively
extract aluminium ions at least in the zeolite pore mouths, whereas the micropores of ZSM-5 zeolites are inaccessible for this bulky acid. Note that extraction of aluminium from the BEA zeolite can be also facilitated by the relatively smaller zeolite crystallite size and presence of structural defects.

The N\textsubscript{2} adsorption–desorption isotherms of the parent zeolites and nickel zeolite catalysts before and after the PSSA extraction are shown in Figure 2. The BEA zeolite exhibits a type I isotherm with an H4 hysteresis \[34\] at higher relative pressure (\(P/P_0 > 0.7\)). This hysteresis loop is probably due to the filling of inter-crystalline spaces between relatively small BEA crystallites. The ZSM-5 samples display type I isotherms characteristic of microporous materials. Impregnation with Ni results in a decrease in the amount of adsorbed nitrogen for both zeolites. Impregnation of ZSM-5 zeolites also results in a broad hysteresis loop, which could be related to the formation of mesopores. This mesoporosity is probably related to the agglomeration of individual zeolite crystallites during impregnation and extraction, which creates voids between the zeolite crystallites with a broader pore size distribution.

Impregnation with Ni leads to a significant decrease in the zeolite surface area and both mesoporous and microporous volumes (Table 1). Note that in addition to the NiO nanoparticles on the zeolite external surface, the impregnated samples also contain nickel species inside the zeolite pores. Therefore, the observed decrease in microporous volume can be due to the localization of nickel inside the zeolite. Because of possible pore blocking, the decrease in the microporous volume, however, is not necessarily directly proportional to the amount of nickel ions located inside of the zeolite crystallites. After the impregnation with nickel nitrate, the decrease in microporous volume is more pronounced in BEA (21%) than in ZSM-5 (~12%). Importantly, the subsequent catalyst exposure to PSSA does not
lead to any noticeable recovery of the microporous volume. Indeed, PSSA mostly extracts nickel species from the zeolite external surface without removing nickel ions from the micropores of ZSM-5 zeolites.

The XRD patterns of the studied catalysts are shown in Figure S1, Supplementary Information (SI), the patterns are offset for clarity. The profiles of the ZSM-5 and relevant nickel catalysts present XRD peaks characteristic of the MFI structure. The samples prepared using BEA zeolites display intense XRD patterns of the beta zeolite, corresponding to materials comprising ~50% of polymorph A and 50% of polymorph B [35]. In addition to the zeolites, crystalline cubic nickel oxide was identified in all nickel zeolite catalysts by the reflections at 37.3°, 43.3°, 62.9°, 75.4°, 79.3° 2θ (JCPDS card No. 78-0643). The NiO crystallite size calculated by the Scherrer equation (Table 1) was between 15 and 22 nm. These NiO crystallite sizes are much larger than the dimeter of the zeolites micropores. This suggests that a part of nickel is present as relatively large oxide crystallites located on the zeolite external surface. The treatment of BEA and ZSM-5 zeolite with PSSA results in modification of XRD patterns. In the case of BEA, only small decreases in the intensity of XRD peaks of NiO and in the Ni contents in the catalysts were observed. In the case of ZSM-5, much more significant decreases in the intensity of NiO XRD peaks and Ni content in the samples was observed. This suggests a clear Ni removal during extraction with PSSA. The results are also consistent with SEM data which showed removal of NiO crystallites from the outré sauce of ZSM-5 zeolite during the extraction (Figure 1a and b).

The TPR profiles of the nickel zeolite catalysts (Figure 3) exhibit broad hydrogen consumption peaks in the temperature range from 350 to 700°C. Previous reports [36, 37] suggest that pure NiO shows a single TPR peak at about 400°C. Thus, the low temperature peaks located between 400 and 500°C may correspond to the reduction of NiO particles.
Note that because of diffusional limitations during the reduction, nickel oxide clusters located in zeolite pores may have slightly higher reduction temperature \[38\]. In addition to the low temperature peaks observed at 420-450°C, TPR profiles of the nickel catalysts prepared from the ZSM-5 zeolite exhibit low intensity peaks at 520-550°C. There are two possible interpretations of these peaks. First, these peaks can be attributed to the presence of nickel phyllosilicate species, as was suggested previously \[37, 39, 40\]. Generally, nickel phyllosilicate is not observed by XRD probably due to its very high dispersion. High temperature TPR peaks can be also attributed to the reduction of highly dispersed nickel species \[38, 41\]. These dispersed nickel species can be either isolated Ni ions in the cationic sites of ZSM-5 and BEA zeolites or extremely small nickel oligomeric species in the zeolite micropores \[38\]. Interestingly, the variation in the intensity of TPR peaks after Ni extraction correlates with the amount of nickel in the catalysts (Table 1). Integration of TPR profiles (Table 2) suggests a relatively high extent of nickel reduction in all zeolite catalysts (>80 %). Thus, all nickel in the catalysts is reducible at temperatures lower than 600-700°C. This is also indicative of a relatively low concentration of hardy reducible nickel silicate or aluminates. The total intensity of the TPR peaks for Ni/BEA and Ni/BEA AT is only slightly affected by the extraction, but their shape changes dramatically (Figure 3). Indeed, nickel in the BEA zeolite is largely located inside the zeolite pores and the total amount of nickel is almost unaffected by this treatment (Table 1). At the same time, the intensity of high temperature peaks decreases and those of the low temperature peaks increases, which is indicative of the decrease in the concentration of Ni\(^{2+}\) ions in the cationic positions of BEA and formation of larger nickel oxide clusters. This is consistent with the significant decrease in the aluminium content in the BEA zeolite following the acid treatment. Indeed, the Brønsted acid sites in zeolites are associated with the bridging Si-OH-Al groups and the
observed decrease in the aluminium concentration in BEA would coincide with the decrease
in the number of cationic sites. This would favour sintering of isolated Ni\(^{2+}\) ions or
oligomeric nickel species into larger NiO clusters.

Some decrease in the intensity of TPR peaks, which are shifted to lower temperatures after
nickel extraction, is observed for Ni/ZSM-5. The lower intensity of TPR peaks in Ni/ZSM-5 AT corresponds to a decrease in the Ni content in the acid-treated samples from 16.7 to
12.8 wt %. The shift of TPR peaks to lower temperature suggests agglomeration of highly
dispersed nickel species into larger nickel oxide particles located in the zeolite pores.

The Ni 2p XPS spectra are displayed in Figure 4. The nickel XPS spectrum can be divided
into two regions by spin-orbit coupling, referred to as 2p\(_{1/2}\) (Å 870–885 eV) and 2p\(_{3/2}\) (Å
845–865 eV) edges [42–44]. These are accompanied by shakeup satellite bands ~1.5 eV
and ~7 eV higher in binding energy relative to the main lines. The amplitude and exact
location of satellite and principal peaks depend on the nickel oxidation state and
coordination [45]. The XPS spectra confirm that nickel is present in its divalent form [46].

The shoulder close to the main line suggests that in ZSM-5 nickel is mostly in octahedral
coordination, similar to that in NiO. In the BEA zeolite, nickel coordination could be more
distorted [45, 46].

The atomic concentration ratios for Ni, Si and Al measured by XPS are given in Table 2.

Extraction using PSSA results in a significant decrease in the concentration of aluminium
in BEA zeolite. The Si/Al and Ni/Si ratios for this zeolite calculated from the XPS data are
consistent with XRF. Note that the amount of nickel only slightly decreases in BEA after
extraction. The Si/Al ratios in Ni/BEA and Ni/ZSM-5 zeolites are also rather close to the
bulk values measured by XRF. Ni/ZSM-5 catalysts show a significant surface
dealumination, whereas the (Si/Al)\(_{XRF}\) bulk ratio remains almost unchanged. Nickel oxide
crystallites were detected by TEM on the outer surface of Ni/ZSM-5 sample (Figure 1a). These crystallites are removed after extraction with PSSA (Figure 1b). The microscopy results are also consistent with XPS, which indicated an increase in nickel concentration of the outer surface of ZSM-5 zeolite. The phenomena are much complex with BEA zeolite. In this zeolite, extraction with PSSA results in partial dealumination.

The acidity of nickel zeolite catalysts was evaluated using pyridine (Py) adsorption monitored by FTIR spectroscopy. The relevant FTIR spectra are shown in Figure 5 (the spectra are offset for clarity). After Py adsorption, BEA and ZSM-5 zeolites exhibit characteristic bands at ~1545 and 1456 cm$^{-1}$ attributed respectively to the pyridinium ion (PyH$^+$) adsorbed on Brønsted acid sites (BAS) and to the Py molecules coordinated to Lewis acid sites (LAS). Py adsorbed on both LAS and BAS also displays a band at ~1490 cm$^{-1}$.

Table 2 shows the concentration of BAS and LAS calculated from the intensity of the FTIR bands at ~1545 and 1456 cm$^{-1}$. The amount of BAS (Py-BAS complexes) significantly decreases in all zeolites after impregnation with the Ni$^{2+}$ ions owing to nickel ion exchange with the protons of the bridged hydroxyl groups. At the same time, the concentration of LAS (Py-LAS complexes) increases. In addition, the Py-LAS peak shifts from 1456 to 1450 cm$^{-1}$. This can be explained by Py adsorption on LAS of the zeolites, associated with extraframework aluminium, (Al)$_{ex}$ and LAS associated with the introduced Ni$^{2+}$ ions. The fractions of Py adsorbed on different types of LAS can be calculated using spectral deconvolution (Table 2). Examples of the deconvolution are given in Figure S2, SI. The concentration of Py adsorbed on Ni$^{2+}$ ions also provides information about the relative fraction of Ni$^{2+}$ in the zeolite cationic positions (Table 2). The extraction with PSSA leads on the one hand to decrease in the concentration of Ni$^{2+}$ ions in BEA zeolite. The treatment of BEA zeolite with PSSA leads also to partial dealumination and an increase in the Si/Al
ratio. Consequently, the concentrations of BAS and LAS significantly decrease (Table 2).

This is probably due to the drop in the concentration of the aluminium and agglomeration of Ni2+ into larger NiO particles. On the other hand, the fraction of the Ni2+ ions increases in the ZSM-5 after extraction. Indeed, mostly nickel oxide particles from the ZSM-5 zeolite outer surface are removed by extraction, whereas the isolated Ni2+ ions inside the zeolite micropores are not affected by this treatment.

In BEA, the BAS concentration drops significantly after the extraction. These results are in good agreement with elemental analysis, which demonstrates that ~80% of Al is removed in the PSSA treated Ni/BEA (Table 1). In both the ZSM-5 samples, the extraction leads to the removal of nickel from the zeolite, whilst FTIR indicates only a slight increase in the concentration of BAS and LAS in the extracted catalysts, which can be attributed to the loss of mostly NiO species and Ni2+ ions from the zeolite outer surface. A major decrease in the concentration of both BAS and LAS is observed in the BEA zeolite after the PSSA extraction. Because of the larger pores and a greater number of defect sites in the BEA structure, PSSA can extract aluminium ions from the zeolite framework. At the same time, Ni species in the pores of the BEA zeolites coalesce into relatively larger NiO clusters leading to much smaller fraction of Ni2+ ions interacting with Py. The amount of Py adsorbed over isolated nickel ions drops significantly in the Ni/BEA zeolite (Table 2). This seems to be due to the extraction of aluminium from the zeolite, which results in the decrease in the concertation of the bridging hydroxyl groups and consequent agglomeration of NiO species. Interestingly, a very slight effect of the extraction was observed on the amount of isolated Ni2+ species in the ZSM-5 zeolites. Indeed, isolated Ni2+ located in the small ZSM-5 micropores cannot be extracted with the bulky PSSA molecules.
Thus, the characterization suggests a strong influence of the impregnation with nickel and extraction with PSSA on the structure of nickel containing zeolite catalysts. XRD analysis indicates that the zeolite crystalline structure is not altered to any noticeable extent by the impregnation and extraction. Larger pores of the BEA zeolite facilitate nickel migration inside the zeolite micropores and ion exchange. Consequently, the impregnated BEA zeolite contains a higher fraction of nickel ions in the zeolite micropores compared to the ZSM-5 counterpart. The acid treatment of the BEA zeolite leads to selective extraction of aluminium ions from the zeolite crystallites. As a result, the Si/Al ratio in BEA increases very significantly after the extraction (from 11.2 to 44, Table 2). Hence, the concentrations of BAS and LAS significantly decrease in Ni/BEA AT. Isolated Ni\(^{2+}\) ions and very small oligomeric species present in Ni/BEA agglomerate after extraction into larger NiO clusters. The situation is very different for the ZSM-5 zeolites, which have micropores smaller than those in BEA. Smaller micropores make it difficult for nickel ions to migrate into the zeolite and to undergo ion exchange with the zeolite hydroxyl groups. Hence, ZSM-5 zeolites after impregnation with nickel nitrate contain a higher fraction of nickel on the zeolite external surface, which is mostly present as NiO according to XPS and XRD. A higher fraction of nickel on the zeolite external surface was detected by TEM and XPS (Table 2) in the ZSM-5 samples. Impregnation with nickel also results in a decrease in the number of BAS because of the partial ion exchange with Ni\(^{2+}\), although it is much smaller than that for BEA zeolite. Extraction with PSSA strongly reduces the amount of nickel on the external surface of the ZSM-5 zeolites. The PSSA molecules do not enter the micropores of ZSM-5 zeolite, which are smaller than the pores in BEA, and almost do not extract aluminium ions. The slight increase in the concentration of BAS observed after the extraction can be attributed to the removal of Ni\(^{2+}\) species from the zeolite cationic sites located mostly on the external surface.
To summarize, the impregnated Ni/BEA zeolite contains Ni\(^{2+}\) ions both on the external surface and in the zeolite micropores, while a higher fraction of nickel is localized on the external surface of the Ni/ZSM-5 zeolite. The nickel on the zeolite external surface of ZSM-5 zeolites is mostly present in the form of NiO clusters. The PSSA treatment performed with Ni/BEA zeolite leads to the extraction of aluminum ions from the zeolite crystallites and a significant increase in the Si/Al ratio. Because of the insufficient number of BAS, Ni species in the BEA zeolite during the extraction agglomerate into larger NiO clusters. The impregnated ZSM-5 zeolites contain larger NiO particles on the external surface and a small amount of nickel in micropores. The extraction results in the removal of nickel from the zeolite external surface and some agglomeration of Ni species inside the zeolite micropores may also occur.

Catalytic tests in toluene and 1,3,5 tri-isopropyl benzene (TIPB) conversion

Hydrogenation of TIPB was used as a model reaction for the nickel active sites on the zeolite external surface. The size of this molecule is greater than the pore sizes of ZSM-5 and even BEA zeolites. Thus, TIPB cannot react on the active sites inside the crystallites of these two zeolites. Previously, TIPB cracking was used to evaluate the reactivity of the Brønsted acid sites on the external surface of Y and ZSM-5 zeolites. This reaction is particularly sensitive to the accessibility of Brønsted acid sites in the mesopores or on the external surface of zeolites. Note that TIPB cracking requires relatively high temperature (about 300°C). Reducing the crystal size of the HY and H-ZSM-5 zeolites [47], using mesoporous hierarchical zeolites [48, 49] or composites [50, 51] leads to a significant increase in the rate of TIPB cracking. In the present work, we used TIPB hydrogenation conducted at 180°C in order to evaluate
the localization of nickel metal sites in the BEA and ZSM-5 zeolites. The catalytic data are presented in Tables 3 and 4. Under the reaction conditions, the only product of TIPB hydrogenation was the corresponding tri-isopropyl cyclohexane. In the catalysts prepared by impregnation, the highest conversion was observed over the Ni/BEA zeolites (Table 3). The concentration of nickel sites on the zeolite external surface depends on zeolite crystallite size, nickel dispersion, reducibility and its distribution between the external surface and micropores. In the impregnated catalysts, the hydrogenation rate seems to depend on the size of zeolite crystallite. After the PSSA treatment, the hydrogenation rate drops much more significantly in Ni/ZSM-5, while in Ni/BEA the reaction rate decreases to a lesser extent and it still remains the most active catalyst. NTY is defined as hydrogenation rate normalized by the nickel content in the catalysts. Note that a significant decrease in the TIPB nickel time yield (NTY) after extraction occurred over ZSM-5 zeolite from 327 to \(108 \times 10^{-6} \text{ s}^{-1}\) (Table 3). Indeed the reaction occurs on the outer surface of the zeolite. PSSA extraction reduces the concentration of the nickel sites on the outer surface and thus the rate of hydrogenation of TIPB, which is a large molecule. The decrease in NTY is less significant over BEA because of more open zeolite structure, larger pore diameter and significant mesoporous volume (Tables 1 and 3).

The catalytic performance of the prepared materials was also evaluated in toluene conversion (Table 4). Toluene is a much smaller molecule than TIPB and should access active sites located on the outer surface and inside the pores of the BEA and ZSM-5 zeolites. The removal of nickel from the zeolite external surface via extraction with PSSA leads to a decrease in the number of metal sites. The remaining metal hydrogenation sites are then located mostly inside the zeolite pores. Interestingly, different to the hydrogenation of TIPB, the toluene hydrogenation rate remains mostly proportional to the overall nickel
content and toluene NTY is not much affected by PSSA extraction and remains about $\sim 5 \times 10^{-3} \text{s}^{-1}$ (Table 4). This suggests that nickel active sites located on the zeolite outer surface and in the zeolite micropores have almost the same intrinsic activity in toluene hydrogenation. Figure 6 shows the ratio of NTY for TIPB and toluene for the nickel zeolite catalysts. This ratio drops drastically after extraction. This is indicative of much more significant decrease in the rate of TIPB hydrogenation compared to toluene, which is likely to be due a much greater drop in the concentration of the nickel on the zeolite outer surface compared to the zeolite micropores. The catalytic data are therefore consistent with the characterization results, which suggest selective removal of nickel ions after the catalyst treatment with PSSA. The proposed strategy for the synthesis of the composites containing metal exclusively in the zeolite micropores can be extended for the design of numerous metal zeolite composite catalysts.

Conclusions

Extraction of nickel ions from the zeolite external surface using PSSA is highly efficient for the synthesis of metal-zeolite composite catalysts selectively containing metal species inside the zeolite micropores. The method is particularly suitable for the ZSM-5 zeolites, whereas for the BEA based catalysts. Unexpectedly, thermal treatment of zeolite materials with PSSA may lead to more complex phenomena than simple selective removal of part of NiO particles, including partial dealumination, which may decrease sintering resistance, and influence catalytic acid-base properties. Such effect can be related to the porous nature of zeolites.

Nickel extraction from the zeolite external surface results in a major decrease in the hydrogenation rate and nickel time yield for bulky TIPB, while the toluene hydrogenation
rate remains largely proportional to the nickel content in the zeolites containing nickel on
the zeolite outer surface and in the micropores. The described approach can be extended to
a wide range of microporous materials and can be used to enhance numerous catalytic
reactions, which occur on metal nanoparticles in the zeolite micropores.

Acknowledgements

The authors are grateful to Olivier Gardoll, Laurence Burylo, Pardis Simon, Martine Frère
and Debora Strossi for help with TPR, XRD, XPS and TEM measurements. The authors
thank International Cooperation Program CAPES/COFECUB Foundation funded by
CAPES — Brazilian Federal Agency for Support and Evaluation of Graduate Education
within the Ministry of Education of Brazil for providing PhD stipends and financial support
for this work. The authors acknowledge financial support of the French National Research
Agency (DirectSynBioFuel project, Ref. ANR-15-CE06-0004 and NANO4-FUT, Ref.
ANR-16-CE06-0013). The authors acknowledge financial support from the European
Union (Interreg V project PSYCHE).

Conflicts of interest

No conflicts of interest to declare.
References

45 Lenglet M, DâHuysser A and Jorgensen CK (1987) Optical spectra, x-ray photoelectron spectra and XANES of divalent nickel in mixed spinels NiFe_{2-x}Cr_{x}O_{4}. Inorganica Chimica Acta 133: 61-65.

Table 1 - Catalyst characterization

<table>
<thead>
<tr>
<th></th>
<th>S_{BET}^a (m2.g$^{-1}$)</th>
<th>V_{meso}^a (cm3.g$^{-1}$)</th>
<th>V_{micro}^a (cm3.g$^{-1}$)</th>
<th>V_{micro} decrease %</th>
<th>NiO cryst. size XRD (nm)</th>
<th>Ni (wt.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBEA</td>
<td>710</td>
<td>0.45</td>
<td>0.19</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ni/BEA</td>
<td>560</td>
<td>0.37</td>
<td>0.15</td>
<td>21</td>
<td>19</td>
<td>17.5</td>
</tr>
<tr>
<td>Ni/BEA AT</td>
<td>550</td>
<td>0.41</td>
<td>0.15</td>
<td>24</td>
<td>20</td>
<td>16.3</td>
</tr>
<tr>
<td>S-ZSM5</td>
<td>450</td>
<td>0.06</td>
<td>0.13</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ni/ZSM5</td>
<td>350</td>
<td>0.06</td>
<td>0.12</td>
<td>12</td>
<td>23</td>
<td>16.7</td>
</tr>
<tr>
<td>Ni/ZSM5 AT</td>
<td>250</td>
<td>0.05</td>
<td>0.08</td>
<td>37</td>
<td>18</td>
<td>12.8</td>
</tr>
</tbody>
</table>

a values normalized per gram of activated zeolite
Table 2 - Catalyst acidity measured by Py adsorption, Ni/Si and Si/Al ratios measured by XRF and XPS

<table>
<thead>
<tr>
<th></th>
<th>BAS(^a)</th>
<th>LAS(^a)</th>
<th>LAS(^{\text{Al(ex)}})</th>
<th>LAS(^{\text{Ni}^{\text{2+}}}_\text{ex})</th>
<th>Ni(^{\text{2+}}/\text{Ni}_{\text{tot}})</th>
<th>XRF</th>
<th>XPS (atomic ratio)</th>
<th>Reducible nickel from TPR(^b), %</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBEA</td>
<td>302</td>
<td>295</td>
<td>295</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ni/BEA</td>
<td>83</td>
<td>372</td>
<td>68</td>
<td>304</td>
<td>10.2</td>
<td>0.54</td>
<td>11.2</td>
<td>0.07</td>
</tr>
<tr>
<td>Ni/BEA AT</td>
<td>48</td>
<td>30</td>
<td>1</td>
<td>28</td>
<td>1.0</td>
<td>0.46</td>
<td>44.0</td>
<td>0.05</td>
</tr>
<tr>
<td>HZSM-5</td>
<td>720</td>
<td>93</td>
<td>93</td>
<td>-</td>
<td>-</td>
<td>9.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ni/ZSM-5</td>
<td>161</td>
<td>347</td>
<td>82</td>
<td>265</td>
<td>9.3</td>
<td>0.51</td>
<td>10.6</td>
<td>0.43</td>
</tr>
<tr>
<td>Ni/ZSM-5 AT</td>
<td>205</td>
<td>332</td>
<td>82</td>
<td>250</td>
<td>11.4</td>
<td>0.36</td>
<td>11.4</td>
<td>0.40</td>
</tr>
</tbody>
</table>

\(^a\) obtained by IR spectroscopy with pyridine adsorption at 150°C

\(^b\) calculated from TPR profiles
Table 3 - Catalytic performance in conversion of TIPB
(T = 180 °C, P = 20 bar, t = 3 h).

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Rate, (\mu)mol/g\text{cat}/s</th>
<th>NTY, (10^6) s(^{-1})</th>
<th>X, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni/BEA</td>
<td>1.5</td>
<td>501</td>
<td>82</td>
</tr>
<tr>
<td>Ni/BEA AT</td>
<td>0.8</td>
<td>296</td>
<td>45</td>
</tr>
<tr>
<td>Ni/ZSM-5</td>
<td>0.9</td>
<td>327</td>
<td>51</td>
</tr>
<tr>
<td>Ni/ZSM-5 AT</td>
<td>0.2</td>
<td>108</td>
<td>13</td>
</tr>
</tbody>
</table>

Table 4 - Catalytic performance in conversion of toluene (T = 150 °C, P = 20 bar).

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Rate, (\mu)mol/g\text{cat}/s</th>
<th>NTY*, (10^{-3}) s(^{-1})</th>
<th>Reaction time, h</th>
<th>X, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni/BEA</td>
<td>11.7</td>
<td>3.94</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>Ni/BEA AT</td>
<td>17.3</td>
<td>6.27</td>
<td>1</td>
<td>43</td>
</tr>
<tr>
<td>Ni/ZSM-5</td>
<td>14.1</td>
<td>4.98</td>
<td>1</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.5</td>
<td>77</td>
</tr>
<tr>
<td>Ni/ZSM-5 AT</td>
<td>11.7</td>
<td>5.38</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td>40</td>
</tr>
</tbody>
</table>

*NTY was calculated from catalytic data after 1 h of reaction.
Figure 1. TEM images of the Ni/ZSM-5 (a), Ni/ZSM5 AT (b), Ni/BEA (c) and Ni/BEA AT (d) catalysts before and after nickel extraction with PSSA.
Figure 2 – Nitrogen adsorption-desorption isotherms of the zeolite and nickel zeolite catalysts before and after treatment with PSSA: a BEA; b ZSM-5.
Figure 3 – TPR profiles of Ni/zeolite catalysts before and after treatment with PSSA: a BEA; b ZSM-5.
Figure 4
Ni 2p XPS spectra of the Ni/zeolites before and after treatment with PSS: a BEA; b ZSM-5.
Figure 5 FTIR spectra observed after the adsorption of pyridine on zeolite based catalysts: a BEA; b ZSM-5
Figure 6 - Ratio of NTY$_{TIPB}$ to NTY$_{toluene}$ for Ni/BEA and Ni/ZSM-5 zeolites before and after extraction.