Blana, D, Kyriacou, T, Lambrecht, J and Chadwick, E (2015) Feasibility of using combined EMG and kinematic signals for prosthesis control: a simulation study using a virtual reality environment. Journal of Electromyography and Kinesiology, 29. pp. 21-27. ISSN 1873-5711

[img]
Preview
Text
D Blana - Feasibility of using combined EMG and kinematic signals for prosthesis control - a simulation study using a virtual reality environment.pdf - Accepted Version

Download (1MB) | Preview

Abstract

Transhumeral amputation has a significant effect on a person’s independence and quality of life. Myoelectric prostheses have the potential to restore upper limb function, however their use is currently limited due to lack of intuitive and natural control of multiple degrees of freedom. The goal of this study was to evaluate a novel transhumeral prosthesis controller that uses a combination of kinematic and electromyographic (EMG) signals recorded from the person’s proximal humerus. Specifically, we trained a time-delayed artificial neural network to predict elbow flexion/extension and forearm pronation/supination from six proximal EMG signals, and humeral angular velocity and linear acceleration. We evaluated this scheme with ten able-bodied subjects offline, as well as in a target-reaching task presented in an immersive virtual reality environment. The offline training had a target of 4° for flexion/extension and 8° for pronation/supination, which it easily exceeded (2.7° and 5.5° respectively). During online testing, all subjects completed the target-reaching task with path efficiency of 78% and minimal overshoot (1.5%). Thus, combining kinematic and muscle activity signals from the proximal humerus can provide adequate prosthesis control, and testing in a virtual reality environment can provide meaningful data on controller performance.

Item Type: Article
Additional Information: This is the accepted author manuscript (AAM). The final published version (version of record) is available online via Elsevier at https://doi.org/10.1016/j.jelekin.2015.06.010 Please refer to any applicable terms of use of the publisher.
Uncontrolled Keywords: Amputation; Prosthesis; Myoelectric; Transhumeral; Electromyography; Artificial neural network; Control
Subjects: Q Science > QH Natural history
Divisions: Faculty of Medicine and Health Sciences > Institute for Science and Technology in Medicine
Depositing User: Symplectic
Date Deposited: 13 Jul 2015 09:14
Last Modified: 15 Jun 2018 11:23
URI: http://eprints.keele.ac.uk/id/eprint/686

Actions (login required)

View Item View Item