Skip to main content

Research Repository

Advanced Search

Age Related Changes in Femoral Head Trabecular Architecture

Greenwood, CE; Clement, JG; Dicken, AJ; Evans, JPO; Lyburn, ID; Martin, RM; Stone, N; Zioupos, P; Rogers, KD

Age Related Changes in Femoral Head Trabecular Architecture Thumbnail


Authors

JG Clement

AJ Dicken

JPO Evans

ID Lyburn

RM Martin

N Stone

P Zioupos

KD Rogers



Abstract

Osteoporosis is a prevalent bone condition, characterised by low bone mineral density and increased fracture risk. Currently, the gold standard for identifying osteoporosis and increased fracture risk is through quantification of bone mineral density using dual energy X-ray absorption. However, many studies have shown that bone strength, and consequently the probability of fracture, is a combination of both bone mass and bone ‘quality’ (architecture and material chemistry). Although the microarchitecture of both non-fracture and osteoporotic bone has been previously investigated, many of the osteoporotic studies are constrained by factors such as limited sample number, use of ovariectomised animal models, and lack of male and female discrimination. This study reports significant differences in bone quality with respect to the microarchitecture between fractured and non–fractured human femur specimens. Micro-computed tomography was utilised to investigate the microarchitecture of femoral head trabecular bone from a relatively large cohort of non-fracture and fracture human donors. Various microarchitectural parameters have been determined for both groups, providing an understanding of the differences between fracture and non –fracture material. The microarchitecture of non-fracture and fracture bone tissue is shown to be significantly different for many parameters. Differences between sexes also exist, suggesting differences in remodelling between males and females in the fracture group. The results from this study will, in the future, be applied to develop a fracture model which encompasses bone density, architecture and material chemical properties for both female and male tissues.

Journal Article Type Article
Acceptance Date Jan 24, 2018
Publication Date Dec 1, 2018
Publicly Available Date Mar 29, 2024
Journal Aging and Disease
Print ISSN 2152-5250
Publisher International Society on Aging and Disease
Peer Reviewed Peer Reviewed
Volume 9
Issue 6
Pages 976-987
DOI https://doi.org/10.14336/AD.2018.0124
Keywords micro computed tomography (µ-CT), osteoporosis, aging, microarchitecture, trabecular bone, femoralhead
Publisher URL http://doi.org/10.14336/AD.2018.0124

Files




You might also like



Downloadable Citations