Skip to main content

Research Repository

Advanced Search

A mathematical model of cartilage regeneration after chondrocyte and stem cell implantation - II: The effects of co-implantation

Kuiper; Naire

A mathematical model of cartilage regeneration after chondrocyte and stem cell implantation - II: The effects of co-implantation Thumbnail


Authors



Abstract

We present a mathematical model of cartilage regeneration after cell therapy, to show how co-implantation of stem cells (mesenchymal stem cells) and chondrocytes into a cartilage defect can impact chondral healing. The key mechanisms involved in the regeneration process are simulated by modelling cell proliferation, migration and differentiation, nutrient diffusion and Extracellular Matrix (ECM) synthesis at the defect site, both spatially and temporally. In addition, we model the interaction between mesenchymal stem cells and chondrocytes by including growth factors. In Part I of this work, we have shown that matrix formation was enhanced at early times when mesenchymal stem cell-to-chondrocyte interactions due to the effects of growth factors were considered. In this article, we show that the additional effect of co-implanting mesenchymal stem cells and chondrocytes further enhances matrix production within the first year in comparison to implanting only chondrocytes or only mesenchymal stem cells. This could potentially reduce healing time allowing the patient to become mobile sooner after surgery.

Acceptance Date Dec 22, 2018
Publication Date Mar 15, 2019
Publicly Available Date Mar 28, 2024
Journal Journal of Tissue Engineering
Print ISSN 2041-7314
Publisher SAGE Publications
Pages 1-14
DOI https://doi.org/10.1177/2041731419827792
Keywords Mathematical modelling, cartilage defect, regenerative medicine, co-culture, mesenchymal stem cells
Publisher URL https://doi.org/10.1177/2041731419827792

Files


kuiper-2019-a-mathematical-model-of-cartilage-regeneration-after-chrondrocyte-2-OA-20190329.pdf (1.2 Mb)
PDF




You might also like



Downloadable Citations