Skip to main content

Research Repository

Advanced Search

Quantification of Student Radiographic Patient Positioning Using an Immersive Virtual Reality Simulation.

Sapkaroski, D; Baird, M; Mundy, M; Dimmock, M

Authors

D Sapkaroski

M Baird

M Mundy



Abstract

INTRODUCTION: Immersive virtual reality (VR) simulation environments facilitate novel ways for users to visualize anatomy and quantify performance relative to expert users. The ability of software to provide positional feedback before a practitioner progresses with subsequent stages of examinations has broad implications for primary and allied healthcare professionals, particularly with respect to health and safety (eg, exposing to x-rays). The effect of training student-radiographers (radiology technicians), with a VR simulation environment was quantitatively assessed. METHODS: Year 1 radiography students (N = 76) were randomly split into 2 cohorts, each of which were trained at performing the same tasks relating to optimal hand positioning for projection x-ray imaging; group 1 was trained using the CETSOL VR Clinic software, whereas group 2 was trained using conventional simulated role-play in a real clinical environment. All participants completed an examination 3 weeks after training. The examination required both posterior-anterior and oblique hand x-ray positioning tasks to be performed on a real patient model. The analysis of images from the examination enabled quantification of the students' performance. The results were contextualized through a comparison with 4 expert radiographers. RESULTS: Students in group 1 performed on average 36% (P < 0.001) better in relation to digit separation, 11% (P = 0.001) better in terms of palm flatness and 23% (P < 0.05) better in terms of central ray positioning onto the third metacarpal. CONCLUSION: A significant difference in patient positioning was evident between the groups; the VR clinic cohort demonstrated improved patient positioning outcomes. The observed improvement is attributed to the inherent task deconstruction and variety of visualization mechanisms available in immersive VR environments.

Acceptance Date Aug 1, 2019
Publication Date Aug 1, 2019
Journal Simulation in Healthcare
Print ISSN 1559-2332
Publisher Lippincott, Williams & Wilkins
Pages 258 - 263
DOI https://doi.org/10.1097/SIH.0000000000000380
Publisher URL https://journals.lww.com/simulationinhealthcare/Fulltext/2019/08000/Quantification_of_Student_Radiographic_Patient.8.aspx