Skip to main content

Research Repository

Advanced Search

Water treatment residuals as soil amendments: Examining element extractability, soil porewater concentrations and effects on earthworm behaviour and survival

Howells, Anthony; Lewis, Steven; Beard, Dylan; Oliver, Ian

Water treatment residuals as soil amendments: Examining element extractability, soil porewater concentrations and effects on earthworm behaviour and survival Thumbnail


Authors

Anthony Howells

Steven Lewis

Dylan Beard



Abstract

Drinking water treatment residuals (WTRs), the by-product of water clarification processes, are routinely disposed of via landfill however there is a growing body of research that demonstrates the material has great potential for beneficial use in environmental applications. Application to agricultural land is one option showing great promise (i.e. a low cost disposal route that provides organic matter input to soils and other potential benefits), however questions remain as to the impact such applications may have on earthworm survival and behaviour and also on the potential effects it may have on soil porewater chemistry. This study examined the leachability of elements within two types of WTRs (one Al- and one Fe- based) from England via 0.001 M CaCl2 solution, at varying pH, and via the Community Bureau of Reference (BCR) sequential extraction scheme. Earthworm avoidance, survival, growth, reproduction and element concentrations were examined in WTR-amended sandy soils (0%, 5%, 10%, 20% w/w), while soil porewaters were also recovered from experimental units and examined for element concentrations. The results revealed leachable element concentrations to be very low in both types of WTRs tested and so element leaching from these WTRs would be unlikely to pose any threat to ecosystems under typical agricultural soil conditions. However, when the pH was lowered to 4.4 there was a substantial release of Al from the Al-WTRs (382 mg/kg). Soil porewater element concentrations were influenced to some degree by WTR addition, warranting further examination in terms of any potential implications for nutrient supply or limitation. Earthworm avoidance of WTR-amended soil was only observed for Al-WTRs and only at the maximum applied rate (20% w/w), while survival of earthworms was not affected by either WTR type at any application rate. Earthworm growth and reproduction (cocoon production) were not affected at a statistically significant level but this needs further examination over a longer period of exposure. Increased assimilation of Al and Fe into earthworm tissues was observed at some WTR application rates (maximum fresh weight concentrations of 42 mg/kg for Al and 167 mg/kg for Fe), but these were not at levels likely to pose environmental concerns.

Acceptance Date Jun 28, 2018
Publication Date Oct 30, 2018
Publicly Available Date Mar 29, 2024
Journal Ecotoxicology and Environmental Safety
Print ISSN 0147-6513
Publisher Elsevier
DOI https://doi.org/10.1016/j.ecoenv.2018.06.087
Keywords Earthworms, Eisenia fetida, Water treatment residuals, Soil amendment, BCR
Publisher URL https://doi.org/10.1016/j.ecoenv.2018.06.087

Files




You might also like



Downloadable Citations