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Abstract

We show a reduction of Hilbert’s tenth problem to the solvability of the matrix
equation At AL - -Aﬁj = Z over non-commuting integral matrices, where 7 is
the zero matrix, thus proving that the solvability of the equation is undecidable.
This is in contrast to the case whereby the matrix semigroup is commutative in
which the solvability of the same equation was shown to be decidable in general.

The restricted problem where £ = 2 for commutative matrices is known as the
“A-B-C Problem” and we show that this problem is decidable even for a pair of
non-commutative matrices over an algebraic number field.

Keywords: Hilbert’s tenth problem, Diophantine equations, Matrix equations,
Undecidability, Formal power series.
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1 Introduction

Matrices and matrix semigroups play a fundamental and central role in many di-
verse fields of mathematics and computer science. There has been a great deal
of interest by researchers on computational problems for finitely generated matrix
semigroups and many natural decision questions on them are in fact undecidable.

One such problem which was studied is the mortality problem. We are given a
finite set of matrices, Gz, forming a semigroup S, and must determine whether the
zero matrix (the matrix with all zero elements) is present in the semigroup. This
problem was shown to be undecidable by M. Paterson in 1970 for 3-dimensional
integer matrix semigroups, [17], and remains undecidable even when there are
only 7 matrices in the generator of the semigroup [9].

The membership problem for a scalar matrix (A matrix with a scalar £ on
all leading diagonal elements and 0 elsewhere) was recently shown to be unde-
cidable for 4-dimensional integral matrices, see [4]. We also mention that the
freeness problem for 3-dimensional integral matrix semigroups is undecidable,
see [13]. In fact, the problem remains undecidable even when the matrices are
upper triangular, see [8].

What can be said of decidable cases in the area however? There are far fewer
cases where decision problems are known to be decidable. It was shown that
the “orbit problem” (Given a matrix M € Q"™*™ and vectors u,v € Q", does
there exist any k& > 0 such that M*u = v?) is decidable, even in polynomial
time, see [12]. Furthermore, it was shown that for a semigroup generated by row-
monomial rational matrices (each row of a matrix contains exactly one nonzero
element), the membership is decidable for any dimension, see [14]. Some crite-
ria for semigroup freeness in two-dimensional upper triangular matrices was also
shown in [8].

Another decidable case which was shown was that for a commutative rational
matrix semigroup in any dimension, where the membership problem was shown
to be decidable in polynomial time, see [1]. In this problem, we are given a
(finite) set of matrices G = { My, Ms, ..., M;} € Q™*"™ where each matrix in G
commutes with each other, and a fixed matrix M. The problem can be stated as:
does there exist natural numbers j1, jo, . . ., j; such that:

MM - M = M?

In this paper we shall examine a related problem where we consider the above
equation for non-commutative integral matrices. We show that given the £ ma-
trices Ay, As, ..., Ap C Z™ ", determining whether there exists natural numbers
11,19, . ..,1; such that:

ADAR . AN = 7,

where Z is the zero matrix, is undecidable. We do not use a reduction of Post’s
correspondence problem, as is standard for undecidability proofs, we instead use
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the undecidability of Hilbert’s tenth problem and properties of formal power series
to show the undecidability.

Given three commutative matrices A, B, C' the problem of determining the
solvability of the equation A’B? = C for arbitrary i, > 0 is known as the
“A-B-C Problem” and was shown to be decidable in [7] (obviously this is a sub-
case of the more general decidability result of [1] but it was considered prior to this
result and formulated after the results of [12]). We show that the “A-B-C Problem”
is decidable even for non-commutative matrices A, B, C' over an algebraic number
field.

2 Preiminaries

2.1 Matricesand Words

Let A be a finite set of letters called an alphabet. A word w is a finite sequence
of letters from A and the set of all words over A is denoted A*. The empty word
is denoted by . For two words v = wujus---u; and v = vqvy---v;, Where
u,v € A*, the concatenation of « and v is denoted by « - v such that v - v =
uug - - - u 0109 - - - v;. By abuse of notation, we also refer to concatenation via
juxtaposition, i.e., u - v = uv. A subset L of A* is called a language.

As usual, for a matrix M/, we denote by M7 the transpose of matrix M. For
an arbitrary semiring &, let vec be a function, vec : K™*" — K™, such that vec
takes an n x n matrix and creates a n? dimensional column vector by stacking the
columns of the matrix on top of each other starting with the first, i.e., for a matrix
M € K™, then:

VEC(M) = (M[l,l]a . '7M[n,1]7M[172}7 s '7M[n,2]7 s '7M[1,n]7 s '7M[n,n])T € Kn2

Let A, B,C, X € K™, then it is well known that the equation AXB = C
(for unknown X), can be rewritten:

(BT @ A)vec(X) = vec(C), (1)

where ® denotes the Kronecker product, see [5].
We shall also need the mixed product property of Kronecker products, namely
that for given matrices A, B, C, D € K™ " it holds that:

(A® B)(C ® D) = (AC ® BD) € K™ *™. )

2.2 Formal Power Series

We use the definitions and terminology as in [6]. Here, and throughout, let K be
a semiring and A a finite alphabet generating a free monoid denoted by A*. A
formal power series, .S, is defined to be a function:

S A — K,
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and the image of a word w € A* under S is denoted (.S, w) and is called the coef-
ficient of w in S. The set of formal power series over A with coefficients in K is
denoted by K ((A)). If there are only finitely many coefficients of a formal power
series which are nonzero, then it is called a polynomial. The set of polynomials
over A with coefficients in K is denoted by K (A). We can also use a standard
notation for a formal power series S € K ((A)) by writing:

S = Z (S, w)w.

wEA*

Given two power series .S and 7', we can define their sum by:
(S+T,w) = (S,w) + (T,w),

for each word w € A*. We may also define the product of S and 7" by:

(ST, w) = > (S,u)(T,v),
where u,v,w € A* and clearly the summation is finite for each word w. Two
external operations of K on K ((A)) are given by:

(kS,w) = k(S,w), (Sk,w)=(S,w)k,

for each w € A* where k € K (note that K& is not required to have commutative
multiplication in general).

A formal power series, S, is called proper if (S,¢) = 0, i.e., the coefficient of
the empty word in S is 0. For a proper formal power series S, we may define the

star operation:
S =35
>0

The rational operations in K ((A)) are the sum, product, star operation and the
two external products. A subset of K ((A)) is rationally closed if it is closed under
the rational operations. The smallest subset of K ((A)) containing a subset F, is
called the rational closure of E. A formal power series S is called K -rational if it
is contained within the rational closure of K (A) (the set of polynomials).

If L is any language over an alphabet A, then its characteristic series (which
we denote by char(L)), is the formal power series S € K((A)):

S =char(L) = ) w,
weL

i.e., itis the series S such that (S,w) = 1ifw € Land 0 ifw ¢ L.
We may also define the Hadamard product of two series S, 7" € K((A)) by:

SOT =Y (S w)(T,ww.

wEA*



It was shown by Schiitzenberger that the Hadamard product of two K -rational
formal power series is also K -rational [20].

Furthermore, a formal power series S € K ((A)) is called recognizable if there
exists an integer n > 1, two vectors p, 7 € K™ and a monoid homomorphism

o A" — K
such that for all words w € A*,

(S,w) = p" p(w)r.

If such elements exist, then (p, 1, 7) is called a linear representation of the formal
power series S.

The following fundamental theorem was originally shown by Kleene for for-
mal power series with boolean coefficients and later extended by Schiitzenberger
to arbitrary semirings:

Theorem 1 (Schitzenberger, 1961 [19]). A formal power series is rational if and
only if it is recognizable.

For details of this proof, see also [6] or [18].

3 Hilbert’sTenth Problem

In 1900, David Hilbert presented a lecture entitled “Mathematische Probleme”
in which he posed 23 related open problems for the new millennium. The tenth
problem, which is the only decision problem of the list, concerns the solvability
of Diophantine equations and can be stated:

Hilbert’s Tenth Problem. Given a Diophantine equation with any number of
unknown quantities and with rational integral numerical coefficients: To devise a
process according to which it can be determined by a finite number of operations
whether the equation is solvable in rational integers.

The problem remained open for 70 years until a “negative solution” to the
problem was shown (In other words, it was shown to be undecidable, although
the notion of algorithmic unsolvability was not known at the time) in 1970 by
Y. Matiyasevich building upon earlier work of many mathematicians, including
M. Davis, H. Putman and J. Robinson. For more details of the history of the
problem as well as the full proof of the undecidability of this theorem, see [15].
Note that we may, without loss of generality, restrict the problem to that whereby
the solution is over natural numbers rather than rational integers, see [15, p.6].

It is well known that we may reduce Hilbert’s tenth problem to a problem
in formal power series, namely the problem of determining for a Z-rational for-
mal power series S € Z((A)), whether there exists any word w € A* such that
(S, w) = 0. We shall now show this reduction, see also [18].
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Let P(nq,no, .. .,n;) be an integer polynomial with % variables (the variables
take natural number values). We shall show a construction of a Z-rational for-
mal power series S over the monoid A = {x,y} with coefficients in the natural
numbers, such that for any word of the form w = x™ya™y - - - yx™ € A*, where
n; > 0 foreach 1 < i < k, it holds that (S, w) = P(ny,na,...,n;)* and for any
word, u, not of this form, (S, u) = 1. Thus, it follows that there exists some word
w € A* such that (S,w) = 0 if and only if the polynomial P has a solution in
natural numbers. Due to the undecidability of the latter problem, the problem on

formal power series is also therefore undecidable.
We shall now give the details of the construction as in [18, p.73]. For each
index 1 < j < k, define:

Rj = Z Myxy -y ly Z n " Z yzitiy - yz™ |
nl,...,nj7120 anO n]‘+1,...,nk20

and it is not difficult to show that each series R; is N-rational. Furthermore, by
examining the product we see that:

(Rj, zMyx™y - - -ya™) = n;.

It can now be seen that the series R € Z((A)) with the required property can
be constructed using the Hadamard product, addition and subtraction of the se-
ries Ry, R, ..., R,. However, we may note that any word w not of the form
x™Myx™y - - - yx™ will have the property that (R, w) = 0. Thus, we finally take
the series:

S =R® R+ char((z*y)"'2)°,

where the superscript C' denotes the complement. This formal power series is
clearly still Z-rational and note that R ® R ensures that each element is positive
or 0. Thus S contains a zero for some word if and only if that word is an encoding
of a correct solution to the given Diophantine equation as required.

4 Undecidable Matrix Equations

We shall now show a construction which will allow us to obtain the undecidabil-
ity of solving a specific type of matrix equation. As above, we shall encode a
Diophantine equation within an Z-rational formal power series, but use a differ-
ent underlying monoid. We shall then convert the series to a linear representation
(which is guaranteed to exist due to Theorem 1) and using this representation, we
shall obtain the undecidability of determining if the matrix equation has a solution.

Theorem 2. Given integral matrices A, , A,,, ..., Ay,,, of dimension n x n, it
is algorithmically undecidable to determine whether there exists a solution to the
equation:
Aio Ail . ‘Aik+1 =7
no* N1 Nk+1 )

where Z denotes the zero matrix and iy, i1, . . ., ix41 € N are variables.
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Proof. Let P(ny,ns,...,n;) denote a polynomial with integer coefficients and
let A = {z1,x9,...,x} be an alphabet. Our first step shall be to construct a
Z-rational formal power series?, S € N((A)), such that for any word of the form
w=zwy? -k € A%, it holds that (S, w) = P(nq,ng,...,n;)? and for any
word u not of this form, we have (S, u) = 1.

The initial construction is similar to that used in Section 3. Instead of encod-
ing the argument of the polynomial within a binary alphabet however, we use a
separate letter for each variable in the encoding. Thus, for each index 1 < j < k,
we define:

e mMane o Ml ' Tl Lk
R; = E Ty Ty Ti1 E :"ﬂj E Tivy Ty ]

ni,...,nj—1>0 n; >0 Njt1,...,nE >0

and as previously, we see that each series R; is N-rational. We now have the
required property that:

(Rj,aytay® - ap*) = ny.

We can thus create a rational formal power series R € Z((A)) using the Hadamard
product, addition and subtraction of the series R, Rs, . . ., Ry in a straightforward
manner. To complete the encoding, we must make words not of the correct form
have nonzero coefficients, thus we define the series:

S =R® R+ char(afz) - 2})°,

where again, char(L) denotes the characteristic series of the language L and the
superscript C' denotes the complement of the series. Thus S has the property that
if any word w € A* is such that (S, w) = 0, then w is of the form z7'z5* - - - x}*
where ny,no, ..., n; € N, and it holds that P(nq,na,...,ng) = 0. Since it is
undecidable if P has any such solution in natural numbers, determining whether
S has a zero coefficient for any word w € A* is undecidable.

Now, using Theorem 1, there exists an integer n > 1, two column vectors
p,7 € Z" and a monoid morphism p : A* — Z™*™ such that for any word
we A*:

(Sv w) = pT,u(w)T,
and (p, i, 7) is called a linear representation of the Z-rational series S.

We shall not discuss how to convert between rational formal power series and
linear representations, see [18] for details. Suffice it to say that in such a con-
version, we may assume that p is of the form (1,0,...,0)” and 7 is of the form
((S,€),0,...,0,1)T where e denotes the empty word. We can also see for a non-
empty word, w € AT that p” pu(w)7 = p(w)p,), i-e., the value (S, w) is given in
the top right element of p(w).

1The series S is Z-rational but the coeffi cients are natural numbers.



Let T' = {u(z1), p(xa), ..., u(xg)} € Z™™ and ¢ be the semigroup gener-
ated by I', then we obtain an undecidable scalar reachability problem, with the
vectors p, 7 and scalar 0. As the final step, we shall show how to obtain the matrix
equation given in the theorem.

First note that (S, ¢) is only present in the 7 vector for the case when we have
a word of 0 length, otherwise, due to the construction in [18], it will be multiplied
by 0 for any non-empty word (since the left most column of u(w) has all zero
elements for all w € A™). Since we may check if (S,¢) = 0 independently, we

may ignore this value and take the vector 7 = (0,0,...,1)%. Let us now define
two new matrices:
10 -0 10 -0
00 --- 0 00 ---
Xo = Co : ;o X1 = Co . € Z"",

i.e., Xy, has all zeros except elements [1, 1] and [n, n] which are 1. Note that X,
and X, are both idempotent, thus X§ = X, and X?,, = Xj,. Consider now
the equation: '

XX XEX = 7, ©
where Z is the zero matrix of dimension n. Since X, and X, are idempotent, the
powers iy and i, are irrelevant unless they equal 0. If iy or ;1 equals 0, then
the corresponding matrix equals the identity matrix. We can clearly see below
however that the result holds even if either of these matrices equals the identity
matrix (in fact we will get more nonzero elements).

Note that for any matrix M € Z"*":

Mpay -+ 0 Mpy
XoMX=| . . . . |,
0 00

and that p” M = Mj, ). In the construction of [18], each matrix in the image of

11, has a zero first column, thus in an equation of the form X(° X ' - - - Xx XM,
the top left element equals 1 if and only if iy = i = --- = i, = 0 (all central
powers are zero corresponding to the empty word and giving the identity matrix),
and we discount this case since we may check (S, ¢) separately as mentioned. As-
sume then that the top left element equals 0. Thus, Equation (3) holds if and only
if My, = p" M7 =0, ifand only if P(ny,ns, ..., ng) = 0. Since determining if
P(nq,na,...,ng) = 0isundecidable, the solvability of Equation (3) for variables
10,11, - - -, ix+1 € N is also undecidable as required. O

We can note that the solvability of Equation (3) is decidable (even in polyno-
mial time) when all matrices are commutative, see [1].
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5 Decidable Cases

We shall now consider decidable cases, in contrast to the results of the last section.
We show that the “A-B-C Problem” is decidable in polynomial time even for non-
commuting matrices A, B, C'.

Let us state the following theorem from [1] which will be useful in this section:

Theorem 3. [1, Theorem 1.4] Let My, M, ..., My, N1, Ny, ..., N, C F*"™ and
P, Q C F™*! be commuting matrices (where F is an algebraic number field), it is
decidable in polynomial time whether there exists any solutions to:

h k
(H Mfi) pP= (H N;“> Q, (4)
j=1

i=1

where xq,...,xh, Y1, ..., Yy, are non-negative integers. If such a set of solutions
exists, it can be found in polynomial time.

Note that from this theorem it holds that we may decide whether the intersec-
tion of two commutative semigroups S, S, generated by { My, Ms, ..., M, } and
{N1, No, ..., Ny} respectively are empty by setting P = Q = I where [ is the
identity matrix (although we need to remove the trivial solution where all expo-
nents equal zero which is easy to do by increasing the dimension of all matrices
by 1 or removing the trivial solution from those considered by Lenstra’s algorithm
in [1]). The same problem for non-commuting matrices was shown to be unde-
cidable by A. Markov in 1947, [16]. The undecidability bounds were improved in
the recent papers [10] and [3].

We shall now use Theorem 3 to show that the A-B-C problem is decidable for
non-commutative matrices over an algebraic number field in any dimension.

Theorem 4. Given three matrices A, B, C' € F™*" (where F is an algebraic num-
ber field), it is decidable if there exists any ¢, 7 > 0 such that:

A'Bl = (.
Proof. Note that the matrix product A*B7 = C can be rewritten
((B") @ A')vec(I,,) = vec(C)

where I, is the n-dimensional identity by applying Equation (1) from Section 2.1.
Iteratively applying the mixed product property of Kronecker products, Equa-
tion (2), we see that:

(BTY @ A = (BTY @ N(I® A" = (BT @ I/ (I @ A)’,

and note that matrices (BT @) and (/® A) commute. Thus the problem becomes:
“Does there exist an ¢, j > 0 such that:

(BT @ I)/(I ® A)'vec(1,) = vec(O)
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is satisfied?”. Since the matrices are now commutative, this is an instance of
Equation (4) where h = 2, k = 1, M; = (BT ® 1), My = (I ® A), N, = 1,
P =vec(l,) and @ = vec(C) and by Theorem 3, this problem is decidable. [

We shall now show a relation of the above result to Skolem’s problem (also
called Pisot’s problem), which we shall soon define after some preliminary defini-
tions. A sequence of integers (u;)3°, is called a linear recurrent sequence if it sat-
isfies the recurrence w,, = w,,_17x—1 +Up_2Tk—2+ - -+ Un_iTro, Where r; are fixed
integers called the recurrence coefficients. The first k& values, wug, uy, - - -, ug_q are
called the initial conditions of the sequence.

Skolem’s Problem. Given the initial conditions and recurrence coefficients of a
linear recurrent sequence, (u;)$°,, determine whether there exists an integer i > 0
such that u; = 0.

The decidability status of Skolem’s problem is a long standing open problem.
It was recently shown to be decidable for linear recurrences of depth 5, see [11].
The following theorem concerning the mortality problem 2 was recently proven:

Theorem 5 ([2]). Skolem’s Problem with depth & recurrences can be reduced
to the Mortality Problem for a semigroup generated by a pair of k-dimensional
integral matrices.

Utilizing this result and Theorem 4, we obtain the following corollary.

Corollary 6. There exist integral matrices P, X, Z € Z*** (where Z is the zero
matrix) such that determining if PX* = Z or X*P = Z are solvable for some
i > 0, is decidable, but determining if PX*P = Z has a solution is equivalent to
Skolem’s problem.

Proof. In the proof of Theorem 5, we have two integral matrices, P, X € ZF**
such that P has a 1 in the top left element and 0 everywhere else. It follows from
the proof that we can therefore state Skolem’s problem as, “Given matrices P, X,
does there exist an i > 0 such that PX*P = Z where Z is the zero matrix?”. This
proves that the decidability of Skolem’s problem can be reduced to the solvability
of the equation PX‘P = Z.

For the decidable cases, note that P is idempotent, thus P? = P, from which
it follows that PX7 = P'X7 for any ¢« > 0 and we know from Theorem 4 that
determining if there exists any 7,7 > 0 such that P°X7 = Z is decidable in
polynomial time (if i = 0, P'X’ = X7 which equals Z for some j iff X is
nilpotent which is easily checked). An almost identical argument holds for the
solvability of X*P = Z, and thus the corollary holds. O

2Given amatrix semigroup, determine whether the zero matrix belongs to the semigroup.
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