Andaur Navarro, CL, Damen, JAA, Takada, T, Nijman, SWJ, Dhiman, P, Ma, J, Collins, GS, Bajpai, R, Riley, RD, Moons, KGM and Hooft, L (2022) Completeness of reporting of clinical prediction models developed using supervised machine learning: a systematic review. BMC Medical Research Methodology, 22 (1). 12 - ?. ISSN 1471-2288

[thumbnail of s12874-021-01469-6.pdf]
Preview
Text
s12874-021-01469-6.pdf - Published Version

Download (2MB) | Preview

Abstract

BACKGROUND: While many studies have consistently found incomplete reporting of regression-based prediction model studies, evidence is lacking for machine learning-based prediction model studies. We aim to systematically review the adherence of Machine Learning (ML)-based prediction model studies to the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Statement. METHODS: We included articles reporting on development or external validation of a multivariable prediction model (either diagnostic or prognostic) developed using supervised ML for individualized predictions across all medical fields. We searched PubMed from 1 January 2018 to 31 December 2019. Data extraction was performed using the 22-item checklist for reporting of prediction model studies ( www.TRIPOD-statement.org ). We measured the overall adherence per article and per TRIPOD item. RESULTS: Our search identified 24,814 articles, of which 152 articles were included: 94 (61.8%) prognostic and 58 (38.2%) diagnostic prediction model studies. Overall, articles adhered to a median of 38.7% (IQR 31.0-46.4%) of TRIPOD items. No article fully adhered to complete reporting of the abstract and very few reported the flow of participants (3.9%, 95% CI 1.8 to 8.3), appropriate title (4.6%, 95% CI 2.2 to 9.2), blinding of predictors (4.6%, 95% CI 2.2 to 9.2), model specification (5.2%, 95% CI 2.4 to 10.8), and model's predictive performance (5.9%, 95% CI 3.1 to 10.9). There was often complete reporting of source of data (98.0%, 95% CI 94.4 to 99.3) and interpretation of the results (94.7%, 95% CI 90.0 to 97.3). CONCLUSION: Similar to prediction model studies developed using conventional regression-based techniques, the completeness of reporting is poor. Essential information to decide to use the model (i.e. model specification and its performance) is rarely reported. However, some items and sub-items of TRIPOD might be less suitable for ML-based prediction model studies and thus, TRIPOD requires extensions. Overall, there is an urgent need to improve the reporting quality and usability of research to avoid research waste. SYSTEMATIC REVIEW REGISTRATION: PROSPERO, CRD42019161764.

Item Type: Article
Additional Information: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
Uncontrolled Keywords: Prediction model, Diagnosis, Prognosis, Development, Validation, Reporting Adherence, Reporting guideline, TRIPOD
Subjects: R Medicine > R Medicine (General)
Divisions: Faculty of Medicine and Health Sciences > School of Medicine
Related URLs:
Depositing User: Symplectic
Date Deposited: 27 Jul 2022 10:38
Last Modified: 27 Jul 2022 10:38
URI: https://eprints.keele.ac.uk/id/eprint/11153

Actions (login required)

View Item
View Item