Frost-Schenk, J, Adsley, P, Laird, AM, Longland, R, Angus, C, Barton, C, Choplin, A, Diget, CA, Hirschi, R, Marshall, C, Chaves, FP and Setoodehnia, K (2022) The impact of O-17 + alpha reaction rate uncertainties on the s-process in rotating massive stars. Monthly Notices of the Royal Astronomical Society, 514 (2). 2650 - 2657. ISSN 0035-8711

[thumbnail of stac1373.pdf]
stac1373.pdf - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview


Massive stars are crucial to galactic chemical evolution for elements heavier than iron. Their contribution at early times in the evolution of the Universe, however, is unclear due to poorly constrained nuclear reaction rates. The competing 17O(α, γ)21Ne and 17O(α, n)20Ne reactions strongly impact weak s-process yields from rotating massive stars at low metallicities. Abundant 16O absorbs neutrons, removing flux from the s-process, and producing 17O. The 17O(α, n)20Ne reaction releases neutrons, allowing continued s-process nucleosynthesis, if the 17O(α, γ)21Ne reaction is sufficiently weak. While published rates are available, they are based on limited indirect experimental data for the relevant temperatures and, more importantly, no uncertainties are provided. The available nuclear physics has been evaluated, and combined with data from a new study of astrophysically relevant 21Ne states using the 20Ne(d, p)21Ne reaction. Constraints are placed on the ratio of the (α, n)/(α, γ) reaction rates with uncertainties on the rates provided for the first time. The new rates favour the (α, n) reaction and suggest that the weak s-process in rotating low-metallicity stars is likely to continue up to barium and, within the computed uncertainties, even to lead.

Item Type: Article
Uncontrolled Keywords: nuclear reactions, nucleosynthesis, stars: rotation
Subjects: Q Science > Q Science (General)
Q Science > QB Astronomy
Divisions: Faculty of Natural Sciences > School of Chemical and Physical Sciences
Related URLs:
Depositing User: Symplectic
Date Deposited: 08 Aug 2022 14:26
Last Modified: 08 Aug 2022 14:26

Actions (login required)

View Item
View Item