Mogas Barcons, A, Chowdhury, F, Chari, DM and Adams, C (2022) Systematic Alignment Analysis of Neural Transplant Cells in Electrospun Nanofibre Scaffolds. MATERIALS, 16 (1). 124 - 124. ISSN 1996-1944

[thumbnail of materials-16-00124.pdf]
materials-16-00124.pdf - Published Version

Download (4MB) | Preview


<jats:p>Spinal cord injury is debilitating with functional loss often permanent due to a lack of neuro-regenerative or neuro-therapeutic strategies. A promising approach to enhance biological function is through implantation of tissue engineered constructs, to offer neural cell replacement and reconstruction of the functional neuro-architecture. A key goal is to achieve spatially targeted guidance of regenerating tissue across the lesion site to achieve an aligned tissue structure lost as a consequence of injury. Electrospun nanofibres mimic the nanoscale architecture of the spinal cord, can be readily aligned, functionalised with pro-regenerative molecules and incorporated into implantable matrices to provide topographical cues. Crucially, electrospun nanofibers are routinely manufactured at a scale required for clinical use. Although promising, few studies have tested whether electrospun nanofibres can guide targeted spatial growth of clinically relevant neural stem/precursor populations. The alignment fate of daughter cells (derived from the pre-aligned parent cells) has also received limited attention. Further, a standardised quantification methodology to correlate neural cell alignment with topographical cues is not available. We have adapted an image analysis technique to quantify nanofibre-induced alignment of neural cells. Using this method, we show that two key neural stem/precursor populations of clinical relevance (namely, neural stem cells (NSCs) and oligodendrocyte precursor cells), reproducibly orientate their growth to aligned, high-density electrospun nanofiber meshes, but not randomly distributed ones. Daughter populations derived from aligned NSCs (neurons and astrocytes) maintained their alignment following differentiation, but oligodendrocytes did not. Our data show that pre-aligned transplant populations can be used to generate complex, multicellular aligned-fibre constructs for neural implantation.</jats:p>

Item Type: Article
Additional Information: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (
Subjects: Q Science > Q Science (General)
Q Science > QD Chemistry > QD415 Biochemistry
Divisions: Faculty of Natural Sciences > School of Life Sciences
Depositing User: Symplectic
Date Deposited: 14 Mar 2023 08:55
Last Modified: 14 Mar 2023 08:55

Actions (login required)

View Item
View Item