Itabashi, H, Datta, S, Tsukuda, R, Hollamby, MJ and Yagai, S (2023) Fine-tuning of the size of supramolecular nanotoroids suppresses the subsequent catenation of nano-[2]catenane. Chem Science, 14 (12). 3270 - 3276. ISSN 2041-6520

[thumbnail of Fine-tuning of the size of supramolecular nanotoroids suppresses the subsequent catenation of nano-[2]catenane.pdf]
Preview
Text
Fine-tuning of the size of supramolecular nanotoroids suppresses the subsequent catenation of nano-[2]catenane.pdf - Published Version
Available under License Creative Commons Attribution.

Download (4MB) | Preview

Abstract

A judicious combination of ring-closing supramolecular polymerization and secondary nucleation can hierarchically organize a diphenylnaphthalene barbiturate monomer bearing a 3,4,5-tri(dodecyloxy)benzyloxy unit into self-assembled nano-polycatenanes composed of nanotoroids. In our previous study, nano-polycatenanes of variable length have been formed uncontrollably from the monomer that provides nanotoroids with sufficiently wide inner void space wherein secondary nucleation is driven by non-specific solvophobic interaction. In this study, we found that the elongation of the alkyl chain length of the barbiturate monomer decreases the inner void space of nanotoroids while increasing the frequency of secondary nucleation. These two effects resulted in an increase in the yield of nano-[2]catenane. This unique property observed in our self-assembled nanocatenanes might be extended to a controlled synthesis of covalent polycatenanes using non-specific interactions.

Item Type: Article
Additional Information: This article is Open Access All publication charges for this article have been paid for by the Royal Society of Chemistry
Subjects: Q Science > QD Chemistry
Divisions: Faculty of Natural Sciences > School of Chemical and Physical Sciences
Related URLs:
Depositing User: Symplectic
Date Deposited: 20 Apr 2023 13:50
Last Modified: 20 Apr 2023 13:50
URI: https://eprints.keele.ac.uk/id/eprint/12178

Actions (login required)

View Item
View Item