Fuller, HR, Mandefro, B, Shirran, SL, Gross, AR, Kaus, AS, Botting, CH, Morris, GE and Sareen, S (2016) Spinal muscular atrophy patient iPSC-derived motor neurons have reduced expression of proteins important in neuronal development. Frontiers in Cellular Neuroscience, 9. ISSN 1662-5102

[thumbnail of 170378_Sareen_Manuscript.PDF]
170378_Sareen_Manuscript.PDF - Accepted Version
Available under License Creative Commons Attribution.

Download (11MB) | Preview


Spinal muscular atrophy (SMA) is an inherited neuromuscular disease primarily characterized by degeneration of spinal motor neurons, and caused by reduced levels of the SMN protein. Previous studies to understand the proteomic consequences of reduced SMN have mostly utilized patient fibroblasts and animal models. We have derived human motor neurons from type I SMA and healthy controls by creating their induced pluripotent stem cells (iPSCs). Quantitative mass spectrometry of these cells revealed increased expression of 63 proteins in control motor neurons compared to respective fibroblasts, whereas 30 proteins were increased in SMA motor neurons vs. their fibroblasts. Notably, UBA1 was significantly decreased in SMA motor neurons, supporting evidence for ubiquitin pathway defects. Subcellular distribution of UBA1 was predominantly cytoplasmic in SMA motor neurons in contrast to nuclear in control motor neurons; suggestive of neurodevelopmental abnormalities. Many of the proteins that were decreased in SMA motor neurons, including beta III-tubulin and UCHL1, were associated with neurodevelopment and differentiation. These neuron-specific consequences of SMN depletion were not evident in fibroblasts, highlighting the importance of iPSC technology. The proteomic profiles identified here provide a useful resource to explore the molecular consequences of reduced SMN in motor neurons, and for the identification of novel biomarker and therapeutic targets for SMA.

Item Type: Article
Additional Information: This Document is Protected by copyright and is to be published by Frontiers. All rights reserved. it is reproduced with permission.
Uncontrolled Keywords: SMA, spinal muscular atrophy, ubiquitin-like modifier activating enzyme 1, uba1, Uchl1, Ubiquitin carboxyl-terminal esterase L1, proteomics, induced pluripotent stem cells, IPSC, motor neuron
Subjects: R Medicine > R Medicine (General)
Divisions: Faculty of Medicine and Health Sciences > Institute for Science and Technology in Medicine
Depositing User: Symplectic
Date Deposited: 16 Dec 2015 09:32
Last Modified: 24 Aug 2018 09:31
URI: https://eprints.keele.ac.uk/id/eprint/1295

Actions (login required)

View Item
View Item