Battino, U, Pignatari, M, Ritter, C, Herwig, F, Denisenkov, P, Den Hartogh, JW, Trappitsch, R, Hirschi, R, Freytag, B, Thielemann, F and Paxton, B (2016) Application of a theory and simulation-based convective boundary mixing model for AGB star evolution and nucleosynthesis. Astrophysical Journal, 827 (1). p. 30. ISSN 0004-637X

[thumbnail of R Hirschi - Application of a theory and simulation based convective boundary mixing model for....pdf]
R Hirschi - Application of a theory and simulation based convective boundary mixing model for....pdf - Published Version

Download (12MB) | Preview


The s-process nucleosynthesis in Asymptotic giant branch (AGB) stars depends on the modeling of convective boundaries. We present models and s-process simulations that adopt a treatment of convective boundaries based on the results of hydrodynamic simulations and on the theory of mixing due to gravity waves in the vicinity of convective boundaries. Hydrodynamics simulations suggest the presence of convective boundary mixing (CBM) at the bottom of the thermal pulse-driven convective zone. Similarly, convection-induced mixing processes are proposed for the mixing below the convective envelope during third dredge-up (TDU), where the ${}^{13}{\rm{C}}$ pocket for the s process in AGB stars forms. In this work, we apply a CBM model motivated by simulations and theory to models with initial mass M = 2 and $M=3\,{M}_{\odot }$, and with initial metal content Z = 0.01 and Z = 0.02. As reported previously, the He-intershell abundances of ${}^{12}{\rm{C}}$ and ${}^{16}{\rm{O}}$ are increased by CBM at the bottom of the pulse-driven convection zone. This mixing is affecting the ${}^{22}\mathrm{Ne}$(α, n)${}^{25}\mathrm{Mg}$ activation and the s-process efficiency in the ${}^{13}{\rm{C}}$-pocket. In our model, CBM at the bottom of the convective envelope during the TDU represents gravity wave mixing. Furthermore, we take into account the fact that hydrodynamic simulations indicate a declining mixing efficiency that is already about a pressure scale height from the convective boundaries, compared to mixing-length theory. We obtain the formation of the ${}^{13}{\rm{C}}$-pocket with a mass of $\approx {10}^{-4}\,\,{M}_{\odot }$. The final s-process abundances are characterized by $0.36\lt [{\rm{s}}/\mathrm{Fe}]\lt 0.78$ and the heavy-to-light s-process ratio is $-0.23\lt [\mathrm{hs}/\mathrm{ls}]\lt 0.45$. Finally, we compare our results with stellar observations, presolar grain measurements and previous work.

Item Type: Article
Additional Information: This work has been made available online in accordance with publisher policies
Uncontrolled Keywords: stars:abundances; stars:evolution; stars:interiors
Subjects: Q Science > QB Astronomy

Divisions: Faculty of Natural Sciences > School of Physical and Geographical Sciences
Related URLs:
Depositing User: Symplectic
Date Deposited: 24 Nov 2016 08:41
Last Modified: 09 Apr 2019 08:17

Actions (login required)

View Item
View Item