Keele Research Repository
Explore the Repository
Truman, PJ (2016) Hopf-Galois module structure of tame biquadratic extensions. Journal de Theorie des Nombres de Bordeaux, 28 (2). pp. 557-582. ISSN 1246-7405
BiquadraticJTNB.pdf - Accepted Version
Download (293kB) | Preview
Abstract
Let $ p $ be an odd prime number, $ K $ a number field containing a primitive $ p^{th} $ root of unity, and $ L $ a Galois extension of $ K $ with Galois group isomorphic to $ C_{p} \times C_{p} $. We study in detail the local and global structure of the ring of integers $ {\mathfrak{O}}_{L} $ as a module over its associated order $ {\mathfrak{A}}_{H} $ in each of the Hopf algebras $ H $ giving nonclassical Hopf-Galois structures on the extension, complementing the $ p=2 $ case considered in [12]. For each Hopf algebra giving a nonclassical Hopf-Galois structure on $ L/K $ we show that $ {\mathfrak{O}}_{L} $ is locally free over its associated order $ {\mathfrak{A}}_{H} $ in $ H $, compute local generators, and determine necessary and sufficient conditions for $ {\mathfrak{O}}_{L} $ to be free over $ {\mathfrak{A}}_{H} $.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Hopf-Galois Theory; Galois module structure; tame extension |
Subjects: | Q Science > QA Mathematics |
Divisions: | Faculty of Natural Sciences > School of Computing and Mathematics |
Depositing User: | Symplectic |
Date Deposited: | 04 Jan 2017 15:24 |
Last Modified: | 28 Feb 2020 10:54 |
URI: | https://eprints.keele.ac.uk/id/eprint/2704 |