Skip to main content

Research Repository

Advanced Search

Mimicking exercise in three-dimensional bioengineered skeletal muscle to investigate cellular and molecular mechanisms of physiological adaptation.

Mimicking exercise in three-dimensional bioengineered skeletal muscle to investigate cellular and molecular mechanisms of physiological adaptation. Thumbnail


Abstract

Bioengineering of skeletal muscle in vitro in order to produce highly aligned myofibres in relevant three dimensional (3D) matrices have allowed scientists to model the in vivo skeletal muscle niche. This review discusses essential experimental considerations for developing bioengineered muscle in order to investigate exercise mimicking stimuli. We identify current knowledge for the use of electrical stimulation and co-culture with motor neurons to enhance skeletal muscle maturation and contractile function in bioengineered systems in vitro. Importantly, we provide a current opinion on the use of acute and chronic exercise mimicking stimuli (electrical stimulation and mechanical overload) and the subsequent mechanisms underlying physiological adaptation in 3D bioengineered muscle. We also identify that future studies using the latest bioreactor technology, providing simultaneous electrical and mechanical loading and flow perfusion in vitro, may provide the basis for advancing knowledge in the future. We also envisage, that more studies using genetic, pharmacological, and hormonal modifications applied in human 3D bioengineered skeletal muscle may allow for an enhanced discovery of the in-depth mechanisms underlying the response to exercise in relevant human testing systems. Finally, 3D bioengineered skeletal muscle may provide an opportunity to be used as a pre-clinical in vitro test-bed to investigate the mechanisms underlying catabolic disease, while modelling disease itself via the use of cells derived from human patients without exposing animals or humans (in phase I trials) to the side effects of potential therapies.

Acceptance Date Feb 3, 2017
Publication Date Mar 21, 2017
Journal Journal of Cellular Physiology
Print ISSN 0021-9541
Publisher Wiley
Pages 1985-1998
DOI https://doi.org/10.1002/jcp.25840
Keywords Skeletal muscle bioengineering, muscle stem cell, muscle hypertrophy, electrical stimulation, mechanical overload
Publisher URL https://doi.org/10.1002/jcp.25840

Files




Downloadable Citations