Yamaguchi, Y, Maruo, K, Partlett, C and Riley, RD (2017) A random effects meta-analysis model with Box-Cox transformation. BMC Medical Research Methodology, 17 (1). 109 -?. ISSN 1471-2288

[thumbnail of A random effects meta-analysis model with Box-Cox transformation.pdf]
A random effects meta-analysis model with Box-Cox transformation.pdf - Published Version
Available under License Creative Commons Attribution.

Download (858kB) | Preview


BACKGROUND: In a random effects meta-analysis model, true treatment effects for each study are routinely assumed to follow a normal distribution. However, normality is a restrictive assumption and the misspecification of the random effects distribution may result in a misleading estimate of overall mean for the treatment effect, an inappropriate quantification of heterogeneity across studies and a wrongly symmetric prediction interval. METHODS: We focus on problems caused by an inappropriate normality assumption of the random effects distribution, and propose a novel random effects meta-analysis model where a Box-Cox transformation is applied to the observed treatment effect estimates. The proposed model aims to normalise an overall distribution of observed treatment effect estimates, which is sum of the within-study sampling distributions and the random effects distribution. When sampling distributions are approximately normal, non-normality in the overall distribution will be mainly due to the random effects distribution, especially when the between-study variation is large relative to the within-study variation. The Box-Cox transformation addresses this flexibly according to the observed departure from normality. We use a Bayesian approach for estimating parameters in the proposed model, and suggest summarising the meta-analysis results by an overall median, an interquartile range and a prediction interval. The model can be applied for any kind of variables once the treatment effect estimate is defined from the variable. RESULTS: A simulation study suggested that when the overall distribution of treatment effect estimates are skewed, the overall mean and conventional I (2) from the normal random effects model could be inappropriate summaries, and the proposed model helped reduce this issue. We illustrated the proposed model using two examples, which revealed some important differences on summary results, heterogeneity measures and prediction intervals from the normal random effects model. CONCLUSIONS: The random effects meta-analysis with the Box-Cox transformation may be an important tool for examining robustness of traditional meta-analysis results against skewness on the observed treatment effect estimates. Further critical evaluation of the method is needed.

Item Type: Article
Additional Information: This is the final published version of the article (version of record). It first appeared online via BioMed Central at http://dx.doi.org/10.1186/s12874-017-0376-7 - please refer to any applicable terms of use of the publisher.
Uncontrolled Keywords: meta-analysis, random effects model, skewed data, box-cox transformation
Subjects: R Medicine > R Medicine (General) > R735 Medical education. Medical schools. Research
Divisions: Faculty of Medicine and Health Sciences > Primary Care Health Sciences
Related URLs:
Depositing User: Symplectic
Date Deposited: 18 Sep 2017 15:43
Last Modified: 13 Aug 2018 10:15
URI: https://eprints.keele.ac.uk/id/eprint/4025

Actions (login required)

View Item
View Item