Jameson, KE, Bolatto, AD, Wolfire, M, Warren, SR, Herrera-Camus, R, Croxall, K, Pellegrini, E, Smith, J-D, Rubio, M, Indebetouw, R, Israel, FP, Meixner, M, Roman-Duval, J, van Loon, JT, Muller, E, Verdugo, C, Zinnecker, H and Okada, Y (2018) First Results from the Herschel and ALMA Spectroscopic Surveys of the SMC: The Relationship between [C ii ]-bright Gas and CO-bright Gas at Low Metallicity. Astrophysical Journal, 853 (2). 111 - ?. ISSN 0004-637X

[thumbnail of Jameson_2018_ApJ_853_111.pdf]
Preview
Text
Jameson_2018_ApJ_853_111.pdf - Published Version

Download (5MB) | Preview

Abstract

The Small Magellanic Cloud (SMC) provides the only laboratory to study the structure of molecular gas at high resolution and low metallicity. We present results from the Herschel Spectroscopic Survey of the SMC (HS3), which mapped the key far-IR cooling lines [C ii], [O i], [N ii], and [O iii] in five star-forming regions, and new ALMA 7 m array maps of ${}^{12}\mathrm{CO}$ and ${}^{13}\mathrm{CO}$ $(2-1)$ with coverage overlapping four of the five HS3 regions. We detect [C ii] and [O i] throughout all of the regions mapped. The data allow us to compare the structure of the molecular clouds and surrounding photodissociation regions using ${}^{13}\mathrm{CO}$, ${}^{12}\mathrm{CO}$, [C ii], and [O i] emission at $\lesssim 10^{\prime\prime} $ ($\lt 3$ pc) scales. We estimate ${A}_{V}$ using far-IR thermal continuum emission from dust and find that the CO/[C ii] ratios reach the Milky Way value at high ${A}_{V}$ in the centers of the clouds and fall to $\sim 1/5\mbox{--}1/10\times $ the Milky Way value in the outskirts, indicating the presence of translucent molecular gas not traced by bright ${}^{12}\mathrm{CO}$ emission. We estimate the amount of molecular gas traced by bright [C ii] emission at low ${A}_{V}$ and bright ${}^{12}\mathrm{CO}$ emission at high ${A}_{V}$. We find that most of the molecular gas is at low ${A}_{V}$ and traced by bright [C ii] emission, but that faint ${}^{12}\mathrm{CO}$ emission appears to extend to where we estimate that the ${{\rm{H}}}_{2}$-to-H i transition occurs. By converting our ${{\rm{H}}}_{2}$ gas estimates to a CO-to-${{\rm{H}}}_{2}$ conversion factor (X CO), we show that X CO is primarily a function of ${A}_{V}$, consistent with simulations and models of low-metallicity molecular clouds.

Item Type: Article
Additional Information: © IOP Publishing. This is the final published version of the article (version of record). It first appeared online via IOP at http://doi.org/10.3847/1538-4357/aaa4bb - please refer to any applicable terms of use of the publisher.
Uncontrolled Keywords: galaxies, dwarf, galaxies, evolution, ISM, clouds, Magellanic Clouds
Subjects: Q Science > QB Astronomy > QB460 Astrophysics
Divisions: Faculty of Natural Sciences > School of Chemical and Physical Sciences
Related URLs:
Depositing User: Symplectic
Date Deposited: 13 Feb 2018 16:28
Last Modified: 18 Mar 2019 12:12
URI: https://eprints.keele.ac.uk/id/eprint/4448

Actions (login required)

View Item
View Item