Skip to main content

Research Repository

Advanced Search

Electrophysiological assessment of primary cortical neurons genetically engineered using iron oxide nanoparticles

Evans, MG; Shakli, A; Jenkins, S; Chari, D

Authors

MG Evans

A Shakli



Abstract

The development of safe technologies to genetically modify neurons is of great interest in regenerative neurology, for both translational and basic science applications. Such approaches have conventionally been heavily reliant on viral transduction methods, which have safety and production limitations. Magnetofection (magnet-assisted gene transfer using iron oxide nanoparticles as vectors) has emerged as a highly promising non-viral alternative for safe and reproducible genetic modification of neurons. Despite the high potential of this technology, there is an important gap in our knowledge of the safety of this approach, namely, whether it alters neuronal function in adverse ways, such as by altering neuronal excitability and signaling. We have investigated the effects of magnetofection in primary cortical neurons by examining neuronal excitability using the whole cell patch clamp technique. We found no evidence that magnetofection alters the voltage-dependent sodium and potassium ionic currents that underpin excitability. Our study provides important new data supporting magnetofection as a safe technology for bioengineering of neuronal cell populations.

Acceptance Date Jan 22, 2017
Publication Date Apr 4, 2017
Journal Nano Research
Print ISSN 1998-0124
Publisher Springer Verlag
Pages 2881-2890
DOI https://doi.org/10.1007/s12274-017-1496-4
Keywords transfection; magnetic nanoparticle; green fluorescent protein (GFP); whole-cell patch damp; fluroescence microscopy
Publisher URL https://link.springer.com/article/10.1007/s12274-017-1496-4