Lakicevic, M, van Loon, JT, Meixner, M, Gordon, K, Bot, C, Roman-Duval, J, Babler, B, Bolatto, A, Engelbracht, C, Filipovic, M, Hony, S, Indebetouw, R, Misselt, K, Montiel, E, Okumura, K, Panuzzo, P, Patat, F, Sauvage, M, Seale, J, Sonneborn, G, Temim, T, Urosevic, D and Zanardo, G (2015) The influence of supernova remnants on the interstellar medium in the large magellanic cloud seen at 20-600 mu m wavelengths. Astrophysical Journal, 799 (1). ISSN 0004-637X

[thumbnail of lakicevic_.pdf]
Preview
Text
lakicevic_.pdf - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview

Abstract

We present the analysis of supernova remnants (SNRs) in the Large Magellanic Cloud (LMC) and their influence on the environment at far-infrared (FIR) and submillimeter wavelengths. We use new observations obtained with the Herschel Space Observatory and archival data obtained with the Spitzer Space Telescope, to make the first FIR atlas of these objects. The SNRs are not clearly discernible at FIR wavelengths; however, their influence becomes apparent in maps of dust mass and dust temperature, which we constructed by fitting a modified blackbody to the observed spectral energy distribution in each sightline. Most of the dust that is seen is pre-existing interstellar dust in which SNRs leave imprints. The temperature maps clearly reveal SNRs heating surrounding dust, while the mass maps indicate the removal of 3.7$^{+7.5}_{-2.5}$ M ☉ of dust per SNR. This agrees with the calculations by others that significant amounts of dust are sputtered by SNRs. Under the assumption that dust is sputtered and not merely pushed away, we estimate a dust destruction rate in the LMC of $0.037^{+0.075}_{-0.025}$ M ☉ yr–1 due to SNRs, yielding an average lifetime for interstellar dust of $2^{+4.0}_{-1.3}\times 10^7$ yr. We conclude that sputtering of dust by SNRs may be an important ingredient in models of galactic evolution, that supernovae may destroy more dust than they produce, and that they therefore may not be net producers of long lived dust in galaxies.

Item Type: Article
Additional Information: ©IOP Publishing, American Astronomical Society
Uncontrolled Keywords: dust extinction, evolution, galaxies: ISM, ISM: clouds, ISM: supernova remnants, Magellanic Clouds, submillimeter: galaxies, submillimeter: ISM
Subjects: Q Science > QB Astronomy
Q Science > QC Physics
Divisions: Faculty of Natural Sciences > School of Physical and Geographical Sciences
Related URLs:
Depositing User: Symplectic
Date Deposited: 14 Jul 2015 10:22
Last Modified: 08 May 2019 13:29
URI: https://eprints.keele.ac.uk/id/eprint/705

Actions (login required)

View Item
View Item