Skip to main content

Research Repository

Advanced Search

A landscape perspective of Holocene organic carbon cycling in coastal SW Greenland lake-catchments

Law, Antonia

A landscape perspective of Holocene organic carbon cycling in coastal SW Greenland lake-catchments Thumbnail


Authors



Abstract

Arctic organic carbon (OC) stores are substantial and have accumulated over millennia as a function of changes in climate and terrestrial vegetation. Arctic lakes are also important components of the regional C-cycle as they are sites of OC production and CO2 emissions but also store large amounts of OC in their sediments. This sediment OC pool is a mixture derived from terrestrial and aquatic sources, and sediment cores can therefore provide a long-term record of the changing interactions between lakes and their catchments in terms of nutrient and C transfer. Sediment carbon isotope composition (d13C), C/N ratio and organic C accumulation rates (C AR) of 14C-dated cores covering the last ~10,000 years from six lakes close to Sisimiut (SW Greenland) are used to determine the extent to which OC dynamics reflect climate relative to lake or catchment characteristics. Sediment d13C ranges from -19 to -32‰ across all lakes, while C/N ratios are <8 to >20 (mean?=?12), values that indicate a high proportion of the organic matter is from autochthonous production but with a variable terrestrial component. Temporal trends in d13C are variable among lakes, with neighbouring lakes showing contrasting profiles, indicative of site-specific OC processing. The response of an individual lake reflects its morphometry (which influences benthic primary production), the catchment:lake ratio, and catchment relief, lakes with steeper catchments sequester more carbon. The multi-site, landscape approach used here highlights the complex response of individual lakes to climate and catchment disturbance, but broad generalisations are possible. Regional Neoglacial cooling (from ~5000?cal?yr BP) influenced the lateral transfer of terrestrial OC to lakes, with three lakes showing clear increases in OC accumulation rate. The lakes likely switched from being autotrophic (i.e. net ecosystem production?>?ecosystem respiration) in the early Holocene to being heterotrophic after 5000?cal?yr BP as terrestrial OC transfer increased.

Acceptance Date Sep 4, 2018
Publication Date Dec 15, 2018
Journal Quaternary Science Reviews
Print ISSN 0277-3791
Publisher Elsevier
Pages 98 -108
DOI https://doi.org/10.1016/j.quascirev.2018.09.006
Publisher URL https://doi.org/10.1016/j.quascirev.2018.09.006

Files




You might also like



Downloadable Citations