Maxted, PFL, Gaulme, P, Graczyk, D, Hełminiak, KG, Johnston, C, Orosz, JA, Prša, A, Southworth, J, Torres, G, Davies, GR, Ball, W and Chaplin, WJ (2020) The TESS light curve of AI Phoenicis. Monthly Notices of the Royal Astronomical Society, 48 (1). pp. 332-343. ISSN 0035-8711

[thumbnail of 2003.09295v1.pdf]
Preview
Text
2003.09295v1.pdf - Submitted Version

Download (1MB) | Preview

Abstract

Accurate masses and radii for normal stars derived from observations of detached eclipsing binary stars are of fundamental importance for testing stellar models and may be useful for calibrating free parameters in these model if the masses and radii are sufficiently precise and accurate. We aim to measure precise masses and radii for the stars in the bright eclipsing binary AI Phe, and to quantify the level of systematic error in these estimates. We use several different methods to model the TESS light curve of AI Phe combined with spectroscopic orbits from multiple sources to estimate precisely the stellar masses and radii together with robust error estimates. We find that the agreement between different methods for the light curve analysis is very good but some methods underestimate the errors on the model parameters. The semi-amplitudes of the spectroscopic orbits derived from spectra obtained with modern echelle spectrographs are consistent to within 0.1%. The masses of the stars in AI Phe are $M_1 = 1.1938 \pm 0.0008 M_{\odot}$ and $M_2 = 1.2438 \pm 0.0008M_{\odot}$, and the radii are $R_1 = 1.8050 \pm 0.0022 R_{\odot}$ and $R_2 = 2.9332 \pm 0.0023 R_{\odot}$. We conclude that it is possible to measure accurate masses and radii for stars in bright eclipsing binary stars to a precision of 0.2% or better using photometry from TESS and spectroscopy obtained with modern echelle spectrographs. We provide recommendations for publishing masses and radii of eclipsing binary stars at this level of precision.

Item Type: Article
Uncontrolled Keywords: stars: solar-type – stars: fundamental parameters – binaries: eclipsing
Subjects: Q Science > QB Astronomy
Q Science > QB Astronomy > QB460 Astrophysics
Divisions: Faculty of Natural Sciences > School of Chemical and Physical Sciences
Related URLs:
Depositing User: Symplectic
Date Deposited: 31 Mar 2020 07:18
Last Modified: 12 Jun 2021 01:30
URI: https://eprints.keele.ac.uk/id/eprint/7851

Actions (login required)

View Item
View Item