Wragg, NM, Burke, L and Wilson, SL (2019) A critical review of current progress in 3D kidney biomanufacturing: advances, challenges, and recommendations. Renal Replacement Therapy, 5 (1). ISSN 2059-1381

[thumbnail of s41100-019-0218-7.pdf]
s41100-019-0218-7.pdf - Published Version

Download (1MB) | Preview


The widening gap between organ availability and need is resulting in a worldwide crisis, particularly concerning kidney transplantation. Regenerative medicine options are becoming increasingly advanced and are taking advantage of progress in novel manufacturing techniques, including 3D bioprinting, to deliver potentially viable alternatives. Cell-integrated and wearable artificial kidneys aim to create convenient and efficient systems of filtration and restore elements of immunoregulatory function. Whilst preliminary clinical trials demonstrated promise, manufacturing and trial design issues and identification of suitable and sustainable cell sources have shown that more development is required for market progression. Tissue engineering and advances in biomanufacturing techniques offer potential solutions for organ shortages; however, due to the complex kidney structure, previous attempts have fallen short. With the recent development and progression of 3D bioprinting, cell positioning and resolution of material deposition in organ manufacture have never seen greater control. Cell sources for constructing kidney building blocks and populating both biologic and artificial scaffolds and matrices have been identified, but in vitro culturing and/or differentiation, in addition to maintaining phenotype and viability during and after lengthy and immature manufacturing processes, presents additional problems. For all techniques, significant process barriers, clinical pathway identification for translation of models to humans, scaffold material availability, and long-term biocompatibility need to be addressed prior to clinical realisation.

Item Type: Article
Additional Information: Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Subjects: Q Science > Q Science (General)
R Medicine > R Medicine (General)
R Medicine > R Medicine (General) > R735 Medical education. Medical schools. Research
Divisions: Faculty of Medicine and Health Sciences > School of Pharmacy and Bioengineering
Depositing User: Symplectic
Date Deposited: 28 Jul 2020 13:07
Last Modified: 08 Mar 2021 15:38
URI: https://eprints.keele.ac.uk/id/eprint/8430

Actions (login required)

View Item
View Item