Nishimura, N, Sawai, H, Takiwaki, T, Yamada, S and Thielemann, F-K (2017) The Intermediate r-process in Core-collapse Supernovae Driven by the Magneto-rotational Instability. Astrophysical Journal Letters, 836 (2). ISSN 2041-8205

[thumbnail of Nishimura__2017_ApJL_836_L21.pdf]
Nishimura__2017_ApJL_836_L21.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial.

Download (1MB) | Preview


We investigated r-process nucleosynthesis in magneto-rotational supernovae, based on a new explosion mechanism induced by the magneto-rotational instability (MRI). A series of axisymmetric magneto-hydrodynamical simulations with detailed microphysics including neutrino heating is performed, numerically resolving the MRI. Neutrino-heating dominated explosions, enhanced by magnetic fields, showed mildly neutron-rich ejecta producing nuclei up to $A\sim 130$ (i.e., the weak r-process), while explosion models with stronger magnetic fields reproduce a solar-like r-process pattern. More commonly seen abundance patterns in our models are in between the weak and regular r-process, producing lighter and intermediate-mass nuclei. These intermediate r-processes exhibit a variety of abundance distributions, compatible with several abundance patterns in r-process-enhanced metal-poor stars. The amount of Eu ejecta $\sim {10}^{-5}\,{M}_{\odot }$ in magnetically driven jets agrees with predicted values in the chemical evolution of early galaxies. In contrast, neutrino-heating dominated explosions have a significant amount of Fe (${}^{56}{\rm{Ni}}$) and Zn, comparable to regular supernovae and hypernovae, respectively. These results indicate magneto-rotational supernovae can produce a wide range of heavy nuclei from iron-group to r-process elements, depending on the explosion dynamics.

Item Type: Article
Additional Information: This publication is available from the publishers at
Uncontrolled Keywords: gamma-ray burst: general, magnetohydrodynamics (MHD), neutrinos, nuclear reactions, nucleosynthesis, abundances, stars: neutron, supernovae: general
Subjects: Q Science > Q Science (General)
Q Science > QB Astronomy
Q Science > QB Astronomy > QB460 Astrophysics
Divisions: Faculty of Natural Sciences > School of Chemical and Physical Sciences
Related URLs:
Depositing User: Symplectic
Date Deposited: 02 Jul 2021 08:02
Last Modified: 02 Jul 2021 08:02

Actions (login required)

View Item
View Item