Skip to main content

Research Repository

Advanced Search

Phorbol Ester-induced Shedding of the Prostate Cancer Marker Transmembrane Protein with Epidermal Growth Factor and Two Follistatin Motifs 2 Is Mediated by the Disintegrin and Metalloproteinase-17

Ali

Phorbol Ester-induced Shedding of the Prostate Cancer Marker Transmembrane Protein with Epidermal Growth Factor and Two Follistatin Motifs 2 Is Mediated by the Disintegrin and Metalloproteinase-17 Thumbnail


Authors

Ali



Abstract

The transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) is expressed in prostate and brain and shed from the cell surface in a metalloproteinase-dependent fashion. Neither the sheddase(s) responsible for TMEFF2 shedding nor the physiological significance or activity of the soluble TMEFF2 ectodomain (TMEFF2-ECD) has been identified. In the present study we present new evidence that a disintegrin and metalloproteinase-17 (ADAM17) is responsible for phorbol 12-myristate 13-acetate-induced release of TMEFF2-ECD using small interfering RNA to ablate ADAM17 expression or by inhibiting enzymatic activity. A single well shedding assay monitoring the release of alkaline phosphatase-tagged TMEFF2-ECD into medium and the generation of 22- and 14-kDa C-terminal fragments in lysates were dependent on ADAM17 activity. A ?-secretase inhibitor prevented the formation of a 10-kDa fragment in cell lysates, thus establishing TMEFF2 as a novel substrate for regulated intramembrane proteolysis. We assigned proliferation-inducing activity to TMEFF2. Inhibition of TMEFF2 shedding using synthetic metalloproteinase inhibitors or small interfering RNA targeting TMEFF2 expression yielded a statistically significant reduction of cell proliferation in the lymph node-derived prostate cancer cells (LNCaPs) and a human embryonic kidney (HEK293) cell line overexpressing TMEFF2. The TMEFF2-ECD was able to induce ERK1/2 phosphorylation in an epidermal growth factor receptor (or ErbB1)-dependent manner in HEK293 cells. Our data suggest that TMEFF2 contributes to cell proliferation in an ADAM17-dependent autocrine fashion in cells expressing this protein.

Acceptance Date Dec 28, 2007
Publication Date Dec 28, 2007
Publicly Available Date Mar 29, 2024
Journal Journal of Biological Chemistry
Print ISSN 0021-9258
Publisher American Society for Biochemistry and Molecular Biology
Pages 37378 - 37388
DOI https://doi.org/10.1074/jbc.M702170200
Publisher URL https://www.jbc.org/article/S0021-9258(20)77691-X/fulltext#%20

Files




You might also like



Downloadable Citations