Skip to main content

Research Repository

Advanced Search

Mesenchymal Stromal Cell Differentiation for Generating Cartilage and Bone-Like Tissues In Vitro.

Mesenchymal Stromal Cell Differentiation for Generating Cartilage and Bone-Like Tissues In Vitro. Thumbnail


Abstract

In the field of tissue engineering, progress has been made towards the development of new treatments for cartilage and bone defects. However, in vitro culture conditions for human bone marrow mesenchymal stromal cells (hBMSCs) have not yet been fully defined. To improve our understanding of cartilage and bone in vitro differentiation, we investigated the effect of culture conditions on hBMSC differentiation. We hypothesized that the use of two different culture media including specific growth factors, TGFß1 or BMP2, as well as low (2% O2) or high (20% O2) oxygen tension, would improve the chondrogenic and osteogenic potential, respectively. Chondrogenic and osteogenic differentiation of hBMSCs isolated from multiple donors and expanded under the same conditions were directly compared. Chondrogenic groups showed a notable upregulation of chondrogenic markers compared with osteogenic groups. Greater sGAG production and deposition, and collagen type II and I accumulation occurred for chondrogenic groups. Chondrogenesis at 2% O2 significantly reduced ALP gene expression and reduced type I collagen deposition, producing a more stable and less hypertrophic chondrogenic phenotype. An O2 tension of 2% did not inhibit osteogenic differentiation at the protein level but reduced ALP and OC gene expression. An upregulation of ALP and OC occurred during osteogenesis in BMP2 containing media under 20% O2; BMP2 free osteogenic media downregulated ALP and also led to higher sGAG release. A higher mineralization was observed in the presence of BMP2 during osteogenesis. This study demonstrates how the modulation of O2 tension, combined with tissue-specific growth factors and media composition can be tailored in vitro to promote chondral or endochondral differentiation while using the same donor cell population.

Acceptance Date Aug 17, 2021
Publication Date Aug 22, 2021
Publicly Available Date Mar 28, 2024
Journal Cells
Publisher MDPI
DOI https://doi.org/10.3390/cells10082165
Keywords osteogenesis; chondrogenesis; donor comparison; osteochondral constructs
Publisher URL https://doi.org/10.3390/cells10082165

Files




Downloadable Citations